
 i

General Purpose Computing with a Graphics

Processing Unit

 A dissertation submitted in partial fulfilment of the

requirements for the DIT's Master of Science Degree in Applied

Computing for Technologists.

Jason Ruane BSc.

Dublin Institute of Technology

Supervisor: Gerard Heapes

Computing, Faculty of Engineering, Bolton Street

October 2006

Volume 1

 ii

Declaration:

 I certify that this dissertation which I now submit for examination for the

award of Master of Science Degree in Applied Computing for Technologists, is

entirely my own work and has not been taken from the work of others save and to the

extent that such work has been cited and acknowledged within the text of my work.

 This dissertation has not been submitted in whole or in part for an award in

any other Institute or University.

 The Institute has permission to keep, to lend or to copy this dissertation in

whole or in part, on condition that any such use of the material of the dissertation be

duly acknowledged

Signature ________________ Date _________________

 Candidate

 1

Table of Contents:

 Page

Title Page i

Declaration ii

Table of Contents 1

List of Figures 4

Abstract 5

1. Introduction to GPGPU 6

 1.1 GPU versus CPU 6

 1.2 Non-von Neumann 8

 1.3 Physics Processing on the Desktop 9

 1.4 GPGPU Examples 10

 1.5 Commercial Success 11

 1.6 Wheel of Reincarnation 11

2. Graphics Cards 13

 2.1 Graphics Card Hardware 13

 2.2 Rate of Growth 14

 2.2.1 Pipelining 16

 2.2.2 Parallelism 17

 2.3 Programmable Graphics 17

 2.4 Shader Languages 18

 2.5 Graphics Programming Interfaces 20

 2.5.1 OpenGL 21

 2.5.2 Direct3D 21

 2.6 Dynamic Compilation 22

 2.7 GPU Computing Framework 23

 2.8 GPU Computing Tools 24

3. Implementation 25

 3.1 The Programming Environment 25

 3.2 GLUT 25

 3.3 Source Code 26

 3.4 Sorting 26

 3.4.1 Bitonic Sort Algorithm 27

 3.4.2 Application on a GPU 28

 2

 3.4.2.1 Frame Buffer Objects 29

 3.4.3 Application on a CPU 30

 3.5 Motion Estimation 30

 3.5.1 Motion Estimation within Video Compression 31

 3.5.2 Implementation on a GPU 32

 3.5.3 Implementation on a CPU 34

4. Results 35

 4.1 Test Conditions 35

 4.2 Sorting 35

 4.3 Motion Estimation 37

 4.3.1 Process Quality 42

 4.3.2 Process Speed 44

 4.4 Stress Testing 46

5. Conclusion 48

 5.1 Commentary of Results 48

 5.2 Short Term Technical Improvements 50

 5.3 Rasterisation and Ray-Tracing 51

 5.4 Future Outlook 53

6. References 54

 6.1 Internet References 58

7. Appendices 65

 7.1 Appendix 1. Sorting Results 65

 7.1.1 Appendix 1.1 Sample Sorting Output 65

 7.1.2 Appendix 1.2 Sorting Times Collated 66

 7.1.3 Appendix 1.3 Comparison with Published GPU Solutions 66

 7.2 Appendix 2. Motion Estimation Results 67

 7.2.1 Appendix 2.1 Timings for Motion Vectors Calculation 67

 7.2.2 Appendix 2.2 Sum Absolute Differences Detail 68

 7.2.3 Appendix 2.3 Sum Absolute Differences Graphs 69

 7.2.4 Appendix 2.4 PSNR Values Detail 70

 7.2.5 Appendix 2.5 PSNR Values Graphs 71

 7.2.6 Appendix 2.6 X1900XGT Timings, Motion Estimation 72

 7.2.7 Appendix 2.7 Total Times for Motion Estimation 72

 7.2.8 Appendix 2.8 Stress Testing 73

 3

 7.3 Appendix 3. Source Code: Sorting 74

 7.3.1 Appendix 3.1 GPU Sorting: GPUbitonicSort.cpp 74

 7.3.2 Appendix 3.2 GPU Sorting: fragmentShader.cg 89

 7.3.3 Appendix 3.3 GPU Sorting: vertexShader.cg 90

 7.3.4 Appendix 3.4 CPU Sorting: CPUbitonicSort.cpp 91

 7.4 Appendix 4. Source Code: Motion Estimation 99

 7.4.1 Appendix 4.1 runTest.bat 99

 7.4.2 Appendix 4.2 GpuCpuVideo.cpp 100

 7.4.3 Appendix 4.3 fragmentShaderSum8*8.cg 132

 7.4.4 Appendix 4.4 fragmentShaderDiff.cg 134

 7.4.5 Appendix 4.5 fragmentShaderBlockSums.cg 135

 7.4.6 Appendix 4.6 fragmentShaderMVdata.cg 136

8. Glossary 137

 4

List of Figures

 Page

1. Recent Performance Trends 7

2. GFLOP Performance 8

3. Processing Power and Bandwidth of GPUs 15

4. Pipeline Structure of a GPU 16

5. GPU Software Infrastructure 18

6. CPU-GPU Overview 19

7. Bitonic Sorting 27

8. Sorting Performance Comparison 28

9. Motion Estimation within Video Encoding 32

10. Exhaustive Block Matching Algorithm 34

11. Sorting Times 36

12. Frame Prediction 38

13. Image Differences 39

14. Motion Vector grid for frames 24 and 25 of COA sequence 40

15. Origin Frame with Superimposed Motion Vectors 41

16. Sample Video Result 42

17. Sum Absolute Difference: Foreman sequence 43

18. PSNR of difference images: Foreman sequence 44

19. Time to process video sequence 45

20. Time to process video sequence (X1900 inclusive) 46

21. Time to sort 65536 Items: ATI 9600 Pro 47

22. Time to sort 65536 Items: ATI X1300 47

23. Sorting Times Comparison 49

 5

Abstract

 Graphics hardware in mainstream PCs has experienced rapid growth in

performance and capabilities recently. The emergence of high level programming

languages, such as Cg, for this commodity hardware has brought a tool of immense

computational power to the mainstream programmer. Examples of how researchers

have harnessed this resource to perform general purpose computing are examined.

The hardware of modern Graphics Processing Units (GPUs) and their parallel nature

is explored. The major facets of how to enact General Purpose computing on a GPU

(GPGPU) are described, and two implementations to demonstrate GPU programming

for general purposes are presented.

 The first implementation is a program to sort a list of random items and the

second implementation is to search for motion vectors in successive video frames,

which is a central component for video encoding and conversion. The performance

of the programs running on the GPU is compared against that of similar programs

running on CPU and it is shown that the GPU performs favourably, outperforming

the CPU by a factor of 6 for Motion Estimation. The performance of the sorting

implementation presented here is also compared with similar published results.

 In closing, a commentary of the results found is presented, the possibilities

for the future of GPGPU are considered and current trends in this area are discussed.

 6

 1. Introduction to GPGPU.

The GPGPU acronym has become associated with the field of General

Purpose computing with a Graphics Processing Unit. This field of study relates to the

programming of Graphics Processing Units (GPU) for uses beyond the original and

traditional sphere of image generation for screen projection. GPUs are the central

processing units of graphics cards (or video cards) found mainly in modern

computers. Originally GPUs were designed to supplement the CPU of a computer for

the task of creating a frame buffer which would be projected onto the monitor or

VDU. The arrival of a new wave of programmable GPUs, however, has facilitated

the usage of these units for purposes other than just on-screen projection, but rather

to perform generic computations hitherto confined to the realm of CPUs.

The programming of a GPU for a general, non-rendering task is

fundamentally different to creating a program for a familiar CPU. While a CPU of a

modern PC is based on the Von Neumann architecture, the GPU is a stream

processor, taking a set of inputs, known as a stream, operating a function, known as a

kernel, upon that set of inputs and then producing a set of outputs to a buffer and

possibly to screen. Parallelism is employed within the GPU so the algorithm, or

kernel, must be formed such that it can operate independently without reference to

neighbouring streams. This parallelism frames the structure of GPU computing and

underpins the activity of porting an algorithm to a GPU.

 1.1 GPU versus CPU:

Heuston (2006) comments on the dichotomy between GPUs and CPUs,

noting how CPUs are more suited to “task parallel” situations, where there are

independent processes running with little communication and adding another process

to satisfy a new task is easily implemented (wwwHEU). For a GPU however, there is

much data (elements of a graphic) for which the same operation is being computed

with no dependencies between the data elements at that time thus being a more “data

parallel” situation, suited to the pipelined nature of GPU hardware.

 Many applications have been successfully demonstrated on the GPU out-

performing the CPU. The PennySort competition is designed to test a computing

platform’s performance at the task of sorting database records, per averaged cent of

 7

hardware cost. Gray (2006) demonstrates the importance of the arrival of the GPU as

a general purpose coprocessor when commenting on the PennySort results:

 “This year saw a breakthrough with GpuTeraSort which uses the GPU

interface to drive the memory more efficiently (and uses the 10x more memory

bandwidth inside the GPU). GpuTeraSort gave a 3x records/second/cpu

improvement”. (wwwGRA)

 Figure 1 below, depicts the number of multiplies which were achieved by a

series of products from ATI, nVidia and Intel demonstrating the increasing gap

between the capabilities of GPUs and CPUs.

Figure 1. Source: wwwHAN

 A more recent comparison is presented by Green (2006) who compares the

observed performance of the latest GPUs against even the theoretical maximums of

CPU performance and demonstrates a continuing trend of divergence (wwwGRE), as

seen in figure 2 below:

 8

GFLOP performance

Figure 2. Source:
GRE

www.

 1.2 Non-von Neumann

 Backus (1978) posits that the Von Neumann style processor (which

encompasses modern PC CPUs), while suiting general purpose functional demands,

suffers from needing to dedicate much of its silicon to the overheads associated with

local memory management, an idea reiterated by Venkatasubramanian (2003). While

the GPU is more of a stream processor it does still suffer from standard CPU limiters

such as memory bandwidth, as described by Hanrahan (2004) where dense matrix-

matrix multiplication has been shown to be bandwidth limited on the GPU of the

day. Such limiters are being addressed by the advances in hardware with ever-

increasing speeds, but since all of this programmable GPU technology is relatively

new, Hanrahan (2004) suggests this may offer an “incredible opportunity for

reinventing parallel computing software” and “architectural innovation”. This notion

inspires the idea that the GPGPU applications of the future may diverge from the von

Neumann style programming constructs (such as the porting of usual data parallel

CPU algorithms) and foster their own unique brand of stream processing (such as the

inception of new GPU specific algorithms). This idea was expanded and reinforced

by Owens et al. (2005) who commented:

 9

 “…new work must go beyond simply `porting` an existing algorithm to the

GPU, to demonstrating general principles and techniques or making significantly

new and non-obvious use of the hardware.”

 1.3 Physics Processing on the Desktop

 While the CPU has dominated the PC computational strength to date, its

monopoly on the computation domain is being eroded in modern high-end PCs

(which one can presume will become the commodity PCs of the future). The GPU is

well established as a powerful coprocessor, primarily used for graphics to date, but

the emergence of non-graphics activities on the GPU expands this role.

 In parallel, the PPU (Physics Processing Unit) is making a tentative

introduction to the desktop PC market. Ageia is one hardware vendor which is

making physics cards (similar to graphics cards), such as the PhysX product, where

these cards operate alongside the GPU in another PCI slot and are dedicated to

calculating the intensive physics of games and scientific applications. The gaming

market could drive the proliferation of PPU cards in mainstream PCs, as it has

already done with GPU cards, thus creating a new market segment. The following is

a quote from an interview with Manju Hegde, CEO of Ageia in 2005, published at

gdhardware.com (www
HED

):

 “There is a possibility that the GPU can supply limited snippets of “physics”

effects. The GPU community has been trying to encourage the use of this

functionality for years with limited success. As we’ve seen with 3D, there is nothing

like dedicated hardware to allow interactive physics to be fully exploited in

tomorrow’s games.”

 Installing a PPU card is not the only way to leverage large scale physics

computations for 3D real time games though; the dual-core and multi-core CPUs

emerging from the mainstream manufacturers are promoted as being the platform for

such computations, encouraging the market to return to the CPU, as evidenced by its

appearance in marketing media, such as an AMD press release of 2006 (wwwAMD)

and Tom’s Hardware Guide (www
THG

). Physics processing is computationally

demanding so require multiple, well considered threads on at least one core for a

CPU, as discussed by Dawson and Walbourn (wwwDAW).

 10

 The third alternative location for physics processing is on the GPU. Havok is

a company which originated in Dublin, Ireland who create the Havok Game

Dynamics SDK (Havok) and suite of middleware physics engines which are

designed to run primarily on the GPU, not just of PCs but also gaming consoles such

as Microsoft Xbox and Sony Playstation 2. Havok (2006) describe the reasoning for

running their software on the GPU (wwwHAV):

GPUs also have a clear advantage as a pre-existing technology familiar and

readily available to consumers and game developers, providing other benefits such

as wide-spread availability, commodity pricing, and mature standards for hardware

and software interfaces.

 The Havok suite of developer tools and runtime software have gained much

market share and acceptance, having been proliferated into over 150 products on all

the main gaming platforms (wwwHAV2). As of 2006 it appears prominently in most of

the current best selling titles. Green (2006) describes using a 3 GPU setup with two

of the GPUS dedicated to graphics generation and one dedicated to physics

calculations. Apart from physics engines, they also provide middleware for other

aspects, such as event-driven character behaviour (as in the “Havok Behaviour”

product). This could be viewed as one scenario where non-graphics computations,

performed on the GPU has already proven itself successful, useful and commercially

viable.

 1.4 GPGPU Samples

 In 1999, Kedem and Ishihara showed how a graphics system with its

inherently SIMD nature could be used to ensure a decryption of any Unix password

(with a 56-bit cipher) in two days via brute force methods. Trendall and Stewart

(wwwTRE) were early pioneers of the modern GPGPU arena, calculating refractive

caustics in a general purpose calculation on graphics system in 2000. Also within the

sphere of graphics, was the work of Proudfoot (2001) who demonstrated procedural

shading on a GPU. In 2001 also, Rumpf and Strzodka used GPGPU methods to solve

the linear heat equation and anisotropic diffusion. Kim and Lin’s simulation of ice

crystal formation in 2003 was performed both on CPU and GPU, for which they

observed between 2.5 and 9.4 times speedup with a GPU implementation versus that

of a CPU.

 11

 In the 2004 book “GPU Gems”, Harris describes a GPU implementation of

the Navier-Stokes equation for stable fluid simulation with a six times speedup

compared to the CPU equivalent. This publication and its successor, “GPU Gems 2”

of 2005 contain a compendium of actual GPU implementations from a number of

leading figures in the GPGPU field. Other examples from these publications include

protein structure prediction by Micikevicius (2005) and financial options pricing by

Kolb and Pharr (2005).

 1.5 GPGPU Commercial Success

 The Havoc suite of products described above is one example of commercial

success but other, even more archetypal examples of non-graphics computation on

the GPU are also available. For example the GPUTeraSort project by Govindaraju et

al. (2006) has experienced much success, having won the PennySort title for 2006

(wwwGRA) (an open competition where the task is to sort as much input as possible

for the averaged hardware cost of one penny) by sorting at the rate of 60GB per

penny’s worth of hardware (Govindaraju et al., 2006).

 Commercial software is also appearing which makes increasing use of the

GPU in a non-real time graphics sense, such as the Avivo products from ATI which

can transcode video using the GPU as a coprocessor (www
AVI

).

 1.6 Wheel of Reincarnation

 The phrase “Wheel of Reincarnation” coined by Myer and Sutherland (1968)

was used to describe a phenomenon where display functions which the CPU could

not satisfy due to performance, were offloaded to dedicated processing units

elsewhere in the system, and as the tasks became more complex, ever more sub-

processors were added in to offload further sub-functions. However, due to CPU

evolution being so great, these functions eventually became subsumed again within

the CPU. Some commentators, for example Crow (2004), have surmised that this

reversion to the CPU will not happen again in the case of graphics processing

because the mass-production of GPUs ensures its cost effectiveness and the rate of

performance increase is greater in the GPU arena than that of the CPU. The

 12

following is from the conclusions of Myer and Sutherland, in 1968, before GPUs

became mass-produced entities:

 General computing power, whatever its purpose, should come from the

central resources of the system. If these resources should prove inadequate, then it is

the system, not the display that needs more computing power.

 The emergence of GPGPU activities demonstrates quite how far the GPU has

progressed, into the stage of actually outperforming the central resources (read:

CPU) which it serves; not just in the task of display handling, but also in certain

GPGPU experiments.

 13

2. Graphics Cards

 2.1 Graphics Card Hardware

 The Graphics Processing Unit, as commonly found in modern PCs and games

consoles, refers to the central calculating engine of the graphics card. The graphics

card, in turn is the self contained array of electronics hardware which encloses and

supports the functions of the GPU. This card is often a physical electronics board

which is attached to the PC motherboard via a PCI Express (Peripheral Component

Interconnect) or AGP (Accelerated Graphics Port) slot.

 The graphics subsystems of today’s PCs are either the dedicated device

mentioned, or an integrated graphics setup whereby less powerful graphics

processors are embedded into the motherboard and share the resources of the host

PC, such as RAM. The dedicated graphics cards are designed primarily to handle the

substantial computational complexity of 3D computer graphics. The integrated

graphics solution lags behind the dedicated card with respect to performance and

capabilities, but is most often capable of satisfying the 2D demands placed on it by

traditional home and business users of PCs. The dedicated systems, while employing

GPUs of higher specifications also benefit from higher access speeds to their

dedicated on-board RAM, such as the current 64Gb/s of the ATI Radeon X1950

XTX card (wwwTOR), whereas integrated graphics systems rely on sharing the

system RAM with the CPU at speeds of 8Gb/s currently. The graphics choice for this

dissertation focuses only on dedicated systems with commercially available graphics

cards, for only these currently provide the required capabilities such as Shader 3.0

support with Frame Buffer Objects.

Graphics cards (and in particular the fragment processors within them,

described below) are more closely associated with SIMD (Single Instruction,

Multiple Data) architecture than their CPU counterparts which are more aligned with

MIMD (Multiple Instruction, Multiple Data). The SIMD paradigm is characterised

by its ability to load a number of inputs simultaneously and to perform a fixed

sequence of operations (kernels) upon this input. MIMD processors, such as CPUs in

modern PCs are designed to operate in a more varied, general purpose way, thus they

tend to load fewer inputs at a time and perform more varying operations on this set of

inputs. For a SIMD device, the advantages include less instruction codes and a

 14

greater opportunity for parallelism. Hanrahan (2004) compares the SIMD

architecture of the GPU to stream processing, in which kernels are units of

operations which process a set of inputs arriving in a stream and generate a similar

stream of outputs, onwards to the next kernel for processing.

2.2 Rate of growth

 The rate of growth in GPU computing power has surpassed even the CPU

market, with GPU transistor counts increasing at a rate of Moore’s Law cubed

(wwwHAN2). GPUs are doubling their transistor count approximately every 6 months

compared to the CPU equivalent of 18 months (Crow, 2004). The number of

transistors is a crude comparison though, as it does not consider the nature of their

designs, GPUs being more typical of SIMD devices and CPUs more aligned with

MIMD devices.

“Their `Moore's Law` is faster than that for CPUs, owing primarily to their

stream architecture which enables all additional transistors to be devoted to

increasing computational power directly.”

 (Venkatasubramanian, 2003).

The following graph in figure 3 demonstrates the rate of increase for

processing power and bandwidth for a selection of nVidia GPUs through 2003. The

relative faster rate of processing power growth can be observed alongside the slower

growth of off-chip bandwidth. This trend encourages higher compute intensity

algorithms on the GPU hardware.

 15

Processing Power and Bandwidth of GPUs.

Figure 3. Source: Owens, 2005.

 As GPUs are becoming more powerful, they have relieved the CPU of much

of the processing work associated with 3D visualisation, such as that of 3D games.

The processing powers of both are difficult to compare, as they do not align directly,

but with respect to FLOP (Floating Logic OPerations) throughput per second, sample

results of today’s PC market from Heuston (2006) show a 3.0GHz Intel Pentium 4

can generate approximately 12GFLOPs peak, while an ATI Raden X1800XT can

process 120GFLOPS peak (wwwHEU).

The GPU which has been a veritable co-processor for the CPU previously,

now has the ability to compute more floating point arithmetic than the actual CPU.

Taking advantage of this processing bounty contained within the GPU is the aim of

the GPGPU community. One reason why this counter-intuitive performance

difference has not been more publicised or impactful upon the PC market is that the

GPU does not suit all types of programs/problems given its stream nature and

hardware restrictions.

 16

 2.2.1 Pipelining

 The graphics cards of today are deeply pipelined, meaning that they order

their computations in a series of stages, each of which can operate simultaneously,

akin to a production assembly line. Geometric primitives delivered as input from the

CPU and are progressively converted and operated upon in each stage. Since each of

the stages operates independently they are candidates for parallelism. Some cards are

highly parallel, such as the nVidia GeForce 7950 GT which has 24 fragment

processors (wwwTOR2).

The general pipelined assemblage of components in most graphics cards

today is described in the below diagram which illustrates the primary functions or

areas. The initial stage is Vertex Transformation, wherein the inputs of vertices

arrives from the CPU and are translated into the various coordinate systems such as

world-space and screen-space which are required downstream. The output of the first

stage is fed into the next stage, freeing the Vertex Transformation stage to begin

processing the next set of inputs. The next stage is the Primitive Assembly and

Rasterisation in which the processed vertices are assembled into geometric primitives

and rasterisation occurs, which is how the GPU generates a fragment for each

potential pixel update which may occur later. The fragments are then passed to the

next stage in which they are textured by applying predefined patterns and colouring

which calculates the various components of colour for each fragment. The fragments

then pass onto the next stage where they may update a particular pixel location in the

framebuffer.

Pipeline Structure of a GPU

Figure 4. Source: Fernando and Kilgard, 2003.

 17

 2.2.2 Parallelism

 The task of graphics generation is highly suited to being performed in parallel

for many stages. The pipelined structure of the hardware compounds this, and a

review of the specifications of current GPU products supports this point. For

example the ATI Radeon X1900 XTX has 48 pixel pipelines (wwwTOR) and the

nVidia GeForce 7950 GT has 24 (wwwTOR2). GPU parallelism appears at another

level also, as described by Govindaraju et al (2006):

 In addition to the SIMD and vector processing capabilities, each fragment

processor can also exploit instruction-level parallelism, evaluating multiple

instructions simultaneously using different ALUs.

 Parallelism is being observed at a macro scale currently; as entire GPU cards

are being installed alongside each other within the same PC in order to share the

graphics workload. The two main technologies supporting this in consumer PCs are

SLI (Scalable Link Interface) from nVidia (www
NVI

) and CrossFire from ATI

(wwwATI).

 The leverage of parallel processing units for increased throughput is an idea

currently being embraced by the CPU community. The current releases of high-end

CPU models are already dual-core (wwwINT) and are on the cusp of quad-core

(wwwTHG2) products.

 2.3 Programmable Graphics

 With the hardware available, the task of directing the graphics systems in a

systematic and controlled fashion is the domain of software. For graphics systems,

this can be summarised by the following diagram, figure 5, which illustrates the

hierarchical structure of most GPU software infrastructures found in modern PCs.

 18

GPU Software Infrastructure

Figure 5. Source: Fernando and Kilgard, 2003.

 In the above diagram, the Cg elements may be interchanged with other shader

languages, with some caveats, and usually only one of either OpenGl or Direct3D are

implemented in a given application. The programming of the graphics card though is

not simply another revision of “von Neumann languages” (a phrase from Backus,

1978 at his Turing award speech describing CPU languages such as FORTRAN and

C) but hints instead at the state machine underneath. While the GPU resembles the

von Neumann-style CPU in many respects, such as its reliance on memory

addressing for textures etc, its state machine descendancy is evidenced in its

programming such as the OpenGL calls which set up operational modes, rather than

execute a function and return a value.

 2.4 Shader Languages

The above description and diagram of the hardware pipeline in figure 5

conveys a high level view of the operations within the graphics system, but the

essence of this study focuses on a particular evolution within this assembly. The

evolution of note was the introduction of programmable vertex and fragment

processors within the GPU. This marked an epoch for computer graphics as it gave

designers and code developers the ability to create custom, configurable effects,

known as shaders, using assembly language. The first commercial card supporting

 19

fragment (or pixel) shading was the nVidia GeForce 3 released in 2001 followed by

the ATI Radeon 9700 of 2002, which permitted looping constructs within the shader.

CPU-GPU Overview

Figure 6. Source: Fernando and Kilgard, 2003.

The programmable vertex and fragment processors are the salient points in

the above diagram, with respect to this dissertation, for it is directly through the

programming of these which allows the programmer to take advantage of the

computing power within, and from which the field of GPGPU has arisen. Originally

designed to allow graphic designers more freedom for their creation of effects in real

time gaming, they have become the focal point for GPGPU activities. The

programmable vertex and pixel processors are generally considered as state

machines, where one initiates a program running and from then on it processes all

input through the program.

Recently, the programming of these elements has been abstracted to a higher

level. Rather than labour with arcane and esoteric assembly language, there now

exists a range of high level languages which can be used, in various configurations,

to program the vertex and fragment processors. This migration to a higher level

language is central to the enabling of GPGPU applications. It has allowed

programmers to harness the programmable vertex and fragment/pixel processors

without needing to learn the particular assembly language, or be overly burdened

with the specifics of the hardware layer. The learning curve for the prospective GPU

programmer is lowered by the similarities between these languages and other more

 20

familiar languages such as C. A cataloguing of the major versions is given in the

following list, from Du Toit and McCool (2004):

• OpenGL Shading Language (GLSL)

• Stanford Real-Time Shading Language (RTSL) (Not currently active)

• Microsoft High Level Shading Language (HLSL) (DirectX specific)

• nVidia Cg (API neutral)

This dissertation is primarily focussed on the Cg language as a means of

programming the GPU as it was found to be freely available, well documented and

API neutral. Cg is a language somewhat similar to C, but a much smaller subset. It

compiles either at runtime, to accommodate the permutations of hardware in the

consumer’s PC, or statically at development stage. The language was developed

primarily at nVidia and was presented in a paper from Mark et al. (2003) at the

SIGGRAPH 2003 convention. The following quote from the introduction foretells of

its later adoption by the GPGPU community as an ideal platform for general purpose

computations:

The Cg language is based on both the syntax and the philosophy of C

[Kernighan and Ritchie 1988]. In particular, Cg is intended to be general-purpose

(as much as is possible on graphics hardware), rather than application specific, and

is a hardware-oriented language.

However, the shader language is merely one component of the steps required

to conduct the orchestra of computation occurring on the programmable GPU. The

other major component is the graphics API, usually one of the popular duopoly:

OpenGL and Direct3D.

 2.5 Graphics Programming Interfaces

 To write applications for computer graphics, today’s programmers rely

mainly on OpenGL (Open Graphics Library) or Direct3D each of which is a

specifications standard defining a general computer graphics API (Application

Programming Interface). From this standard, graphics hardware manufacturers can

create libraries to effect the functions declared in the standard, and programmers can

write their programs to call the functions relying on a standard implementation

 21

occurring. The API is thus an interface to the hardware of the graphics infrastructure.

These standards have progressed with the demands of programmers and advances in

hardware offered by the manufacturers. This allows compatibility between software

and hardware to be captured succinctly, such as a 3D game which declares OpenGL

2.0 as part of its minimum requirements, and a graphics card manufacturer which

produces an item declaring OpenGL 2.0 support.

 2.5.1 OpenGL

 Widely used, OpenGL supports multiple platforms, languages and

windowing systems. The specifications standard was developed initially by SGI

(Silicon Graphics Incorporated) who also founded the OpenGL ARB (Architecture

Review Board) in 1992 (Ruge, 2001). The OpenGL ARB comprises of a group of

companies which have directed the development of this standard to date, announcing

at SIGGRAPH 2006 that it would transfer ownership to the Khronos Group, an open

membership consortium, by the end of 2006 (wwwRIE).

While OpenGL is a specification which declares the functions which must be

made available to the programmer, it does not dictate precisely how that

implementation should occur on the graphics hardware.

 Individual calls can be executed on dedicated hardware, run as software

routines on the standard system CPU, or implemented as a combination of both

dedicated hardware and software routines. (wwwOPE)

 This flexibility permits the hardware manufacturers to differentiate

themselves, by providing hardware acceleration (via the GPU etc.) or reverting to a

software implementation; meanwhile the programmers can rely on a consistent

result. The standard is also extensible, in that manufacturers may provide their own

extended functionality for the programmer, and that extension may be considered by

the governing body (e.g. OpenGL ARB) after which it may become part of the

ratified API. This flexibility allows advances made in hardware to quickly propagate

to developers and consumers.

 22

 2.5.2 Direct3D

 Microsoft operating systems since Windows ’95 support OpenGL, (Microsoft

was a founding member of the ARB (Fernando and Kilgard, 2003) but Microsoft

also developed in parallel, a 3D graphics API of their own, as part of the DirectX

project available for Windows ’95 and later (wwwISL). An initial impetus for the

project was the aquiring of the company RenderMorphics in 1995 and their 3D API

of that time “Reality Lab” (wwwLIN). The DirectX initiative encompasses other

media components such as sound (DirectSound), user interaction (DirectInput) and

communications (DirectPlay) in addition to graphics management. This API is not

cross-platform, as it is compatible only with Microsoft OS on PC and the Xbox

gaming console. Direct3D exposes the hardware features of the graphics system to

the programmer, similar to OpenGL, and currently also supports shader languages

such as Cg and HLSL (Microsoft’s own shader language, similar to Cg).

 2.6 Dynamic Compilation

 Cg, as a shader language is designed to instruct the programmable vertex and

fragment processors how to operate but the Cg source code must be compiled into

assembly language first. This can be accomplished in either of two ways, the first

being via static compilation whereby the programmer compiles the code before

publishing it. The other method is dynamic compilation whereby the Cg code is

delivered to the graphics API (OpenGL or Direct3D) via the Cg Runtime, an

intermediary compiler which compiles the Cg as necessary for the GPU when it is

required by the application.

 This dynamic element permits the graphics system to compile the Cg code in

a method which matches the capabilities of the GPU. Thus the programmer can write

various Cg programs to match various consumer hardware permutations and the

resultant program can maximise portability. The various configurations of graphics

hardware, API and shader languages are managed by means of profiles. A profile

depicts the compile and run capabilities of a given computer, and it is against the

active profile, which the Cg will be compiled. For example a sample Cg fragment

profile is “ps_2_0” which equates to a DirectX 9 compatible setup (Fernando and

Kilgard, 2003).

 23

 2.7 GPU Computing Framework

 To perform computing on the GPU, a number of techniques and

idiosyncrasies of the hardware and APIs must be considered. Firstly, in what part of

the GPU hardware these computations will be performed. The fragment processor of

today’s current hardware is the suitable choice for most scenarios because the output

of the fragment shader goes to the framebuffer, and can be captured back to the CPU

thus facilitating results feedback. Also, graphics cards usually utilise a number of

fragment shader in parallel, such as the 24 in the nVidia 7950GT (wwwTOR2). One

drawback of the fragment processor is that since it is predestined to write to a

particular pixel location, scatter writing to a random memory address is not permitted

currently, so a gather operation may be required afterwards to collate the output.

 The fragment (and recently vertex) processors have the ability to reference

the texture unit in order to retrieve texture information. This facility can be used to

bring input data to the kernel, by loading the data as one or more textures. For

example in the implementation section described below, the input sets of random

data which is to be sorted is stored inside a 2D texture with one input per pixel,

similar to a 2D memory array within a CPU context.

 The computation itself is implemented as a kernel on the fragment processor.

For the implementation below, this is completed by a Cg program which is loaded

onto the fragment processor via the Cg runtime compiler (which generates assembly

bytecode for the processor) and the OpenGL API which conducts the proceedings.

When the computation has been performed, the output is sent to the framebuffer, or

in the GPGPU case, it may be redirected to a texture, in a technique known as

“render-to-texture”. This texture may later become the input to another phase, or

pass, of the program.

 To actually initiate any computation though, data must be sent through the

graphics pipeline, which translates into effectively attempting to draw a geometric

figure. In the implementations of this dissertation, and most GPGPU applications,

this geometry is a simple quadrilateral which as it passes through the graphics

pipeline will become a 2D array of fragment operations occurring effectively in

parallel.

 Given the nature of computing on the GPU, certain classes of problems

emerge as being more suited to the GPU than others. For example, compute intensive

 24

problems are suited since texture fetches incur a delay and GPUs do not have the

same magnitude of on-die memory cache as CPUs. Buck, (2005) describes this effect

and why it leads to the scenario where higher compute intensity is preferred:

 Therefore, if we want to be limited by the computing performance of the GPU

and not by the memory, our programs need to contain enough arithmetic instructions

to cover the latency of any texture fetches we perform.

 2.8 GPU Computing Tools

 For programming a modern CPU, source code debugging can be aided by a

number of tools. Such tools include Microsoft Visual Studio Debugger for Visual

Studio .NET or GNU Debugger for Unix and Windows based GNU (GNU’s Not

Unix) development (wwwGNU). Programming for a GPU however requires a quite

different suite of tools, as they must analyse the activities of the GPU and its

programs or performance. The state of development in this area is not as advanced as

CPU debuggers however there is a selection of products available to serve this niche.

The existence of these debuggers owe mainly to the efforts involved in graphics

optimisation and the requirements of graphics designers/programmers rather than

those of the GPGPU community.

 To debug OpenGL code on both ATI and nVidia GPUs, a company named

Graphic Remedy produce a product called “gDEBugger” which allows the user to

perform many of the traditional debugging operations such as permitting breakpoints

but also allowing an analysis of the pipeline’s performance (wwwGDE). The

“perfHud” product, as described by Kiel and Dietrich (2006) from nVidia is another

such tool, but is restricted to nVidia GPUs currently. For basic debugging of the Cg

shading language, the Cg compiler can return error codes via the OpenGL or DirectX

APIs to indicate any syntactical errors or a situation where the hardware limits have

been breached by the compilation process. For example, if after unrolling a loop the

compiler finds it has more sequential instructions to perform than the shader allows.

One utility concerned with GPGPU programming is “GPUBench”. This product,

presented by Buck, Fatahalian and Hanrahan (2004) is designed with profiling shader

capabilities pertinent to GPGPU applications and is open source managed (wwwBEN).

 25

3. Implementation

 The implementations chosen for this dissertation were sorting and the

calculation of motion vectors for motion estimation as part of video compression.

The former, a classic problem in the sphere of computing, has been implemented

innumerable times on all software platforms and demonstrates a primary capability

of a computing system. The later was chosen for its high degree of computation

required, and its applicability to the emerging importance of video compression in

the commodity PC market. Sorting on a GPU has been shown by Buck and Purcell

(2004) to be a viable proposition and a worthwhile endeavour, so revisiting this task

on today’s commodity graphics cards was inspiration for this undertaking. The latter

choice for calculating motion vectors between successive video frames was chosen

as it permitted the opportunity for innovative exploration, aligning with the previous

work of Green (2005) and Fang et. al. (2004) which showed successful DCT

(Discrete Cosine Transform, another major component of video transcoding) and

IDCT (Inverse DCT, its reverse action) calculation on the GPU.

 3.1 The Programming Environment

The programming framework used for both implementations herein

comprises of a .cpp file containing all of the C/C++ code for each task (sorting and

video), which utilises OpenGL with the GLUT system, and Cg programs (each a text

file) loaded to the vertex and fragment processors. The C and C++ code has been

written linearly in a C fashion, rather than in a strictly object oriented fashion, save

for the usage of C++ only elements (such as std::sort). The code was compiled with

Microsoft Visual Studio 6, producing a single binary for each task (such as

GPUbitonicSort.exe), which relies on OpenGL libraries and Cg runtime to instruct

the GPU how to load the textures of input data, run the Cg programs and report back

the sorted output data.

3.2 GLUT

The OpenGL Utility Toolkit (GLUT) was originally written by Mark Kilgard

in 1994 (www
GLU

), but the Win32 version used here was a port by Nate Robins

 26

(wwwROB). It is a popular toolkit which allows ease of introduction into the OpenGL

programming arena; allowing for simpler creation of basic windowing and a higher

level of abstraction for many OpenGL and operating System tasks. The OpenGL

Extension Wrangler Library (GLEW) is a similar set of libraries which is often

implemented alongside GLUT, but for portability reasons GLEW was not employed

in this implementation.

 3.3 Source Code

The commenting of the code was written in accordance with the JavaDoc

specification of Sun Microsystems (www
SDN

) and along the guidelines specified by

the official Sun Java document (wwwSUN).

The packaging of the resultant binary, Cg files and required libraries resulted

in both demonstrations being able to run on a PC with base installation of Windows

XP, a sufficient graphics card and its relevant drivers. This enveloped the programs

into portable units of minimal size requiring no local machine installation. The actual

listings of the source code are given in the appendices 7.3 and 7.4 sections.

 3.4 Sorting

CPU Sorting has been demonstrated previously in numerous well-

documented algorithmic forms, thus providing a basis for comparative performance

analysis. To this extent, the standard sorting routines provided in the C and C++

languages were taken as exemplary baselines, against which the GPU

implementation, undertaken here, could be compared and contrasted with. The nature

of the GPU, which is a SIMD device, means that it operates independently on each

element. This restricts the number of algorithms which are easily employed on a

GPU. Classical approaches to sorting such as “quick sort” and “heap sort” are not

suitable for GPU implementation as random write addressing is not yet available, but

other approaches are entirely suitable for the hardware nature of the GPU. Such

examples of suitable algorithms are binary sort, odd-even transposition merge sort,

and bitonic sort as introduced by Batcher (1968). The bitonic sort algorithm was

chosen for this dissertation as it exhibits O(log2 n) performance (wwwBLA),

surpassing that of both binary and transposition sort (Venkatasubramanian, 2003). It

 27

was also the algorithm of choice for the 2004 implementation by Buck and Purcell

(2004). Greß and Zachmann (2006) later improved upon the bitonic sort performance

with an adapted version which they named “GPU-ABiSort”, however this more

elaborate version was not undertaken in this implementation in order to focus more

on the GPU computations than the intricacies of the algorithms themselves.

 3.4.1 Bitonic Sort Algorithm

 The algorithm of Bitonic sorting is suited to the parallel nature of GPU

hardware as it permits up to n processors to simultaneously sort n elements over

O(log
2
n) steps (Buck and Purcell, 2004). For this algorithm, the merging function

can be performed in parallel on the fragment processors. The following diagram from

Buck and Purcell (2004) shows the algorithm as applied to an input set of 8 numbers:

Bitonic Sorting

Figure 7. Source: Buck and Purcell, 2004.

 28

 The bitonic sort implementation of Govindaraju et. al. (2005) reported

performance of almost six times that of Quicksort on a CPU. The following diagram

from that paper compares their observed sorting throughputs of GPU and CPU

examples:

Sorting Performance Comparison

Figure 8. Source: Govindaraju et al., 2005

 3.4.2 Application on a GPU

To sort a list of items on a GPU, that which needs to be sorted must be

converted into a form of data which the GPU can handle, namely: numbers. The

GPUSort project (wwwSOR), for example, sorts strings by first converting them into

numbers, and sorting those numbers. Kumar describes this as: "The GPU cannot do

string compares. Hence, the keys are first converted into floating point numbers so

that they can be operated inside the GPU” (wwwKUM). For the sorting

implementation here this string conversion is not included as the essence of the

exercise is to demonstrate the GPU’s strengths, so the input for this program is

defined as numbers (specifically 8 bit [0 to 255] integers, supplied in ASCII text

format).

The fragment processor is the most suitable location on GPU hardware to

perform these operations as it requires many texture addresses and a large number of

calculations. The vertex processor, while now becoming a texture addressing

component, does not yet compare to the throughput capabilities of the fragment

processor. The fragment processor does not currently support scatter operations,

therefore it cannot write its results to a random memory address. The algorithm is

 29

structured in such a way as to avoid this requirement, operating instead in gather

form. The fragment processor (or rather, one of the available parallel operating

fragment processors) operates solely on one fragment, or potential pixel in the frame

buffer, at a time. During this operation, the fragment processor may access textures

from the GPU memory to retrieve input, after which a single output is created. This

output is generally the colour intended as the pixel update to the screen, for graphical

purposes, but in GPGPU applications the output is instead viewed as a single, four

component tuple which can represent data in the more conventional sense.

The texture addressing originally intended in graphical situations as the

ability to retrieve colour information for paint onto surfaces, serves in a GPGPU

sense to allow the inputting of large amounts of numerical data embedded into the

textures. The data embedded into the textures in this implementation is a series of 8-

bit numbers ranging from 0 to 255. The fragment processor inputs the data by

accessing the texture and presents one output colour per fragment evaluated; this

output being an element of the sorting data. Each fragment processor may access

numerous textures; at random coordinate points within, but may only emit one

resultant value for the output (Buck, 2005).

One aspect of performing the sorting actions on the GPU is that it is trivial to

display the textures in memory after each pass, thus providing visual feedback as to

the progress of the algorithm; since the colour of each pixel represents the number by

which it is being sorted, one can literally see the elements being sorted in real time.

Such feedback is an option which was availed of in this implementation.

For the implementation stages of this dissertation, Cg was chosen as the

language with which to program because:

• It is well documented and freely available.

• It is platform independent.

• It is API neutral, operating with both OpenGL and DirectX.

• It is a familiar language construct, similar to C.

 3.4.2.1 Frame Buffer Objects

 For both applications, Frame Buffer Objects (FBO), a relatively recent

feature of GPU programming, meant that the programs did not necessarily need to

 30

reflect all calculations with an ultimate drawing of pixels to screen; rather the

destination frame buffer was set to an area of memory (in these cases textures),

which could then be rapidly redeployed as inputs to the next iteration. The use of up

to four colour attachments to each FBO proved efficient for buffer reallocation. This

resulted in the ability for feedback looping and a higher rate of processing, since

vertical synchronising with a physical screen was not necessary. The FBO facility

was provided by the OpenGL framework (wwwOGL). However, utilising such

recently developed techniques preclude the use of these programs on older hardware,

although this is not an issue for the future as graphics cards currently being produced

are sufficiently powerful.

 3.4.3 Application on a CPU

 For the demonstration of sorting with a familiar CPU implementation, the

following three methods were used:

• Qsort, the C standard library.

• Std::sort, the C++ standard template library sorting routine.

• Bitonic sort, as written in a similar fashion to the GPU equivalent.

 The former two methods served as quantitative benchmarks for speed and

ease of use, whereas the latter was an exercise to demonstrate the computational

workload which the GPU was performing, and how that would compare on a CPU.

All three CPU sorting methods were combined into one program, labelled

CPUbitonicSort.

 3.5 Motion Estimation

 For this implementation, the task of calculating motion vectors between

successive frames of video sequence was chosen. The calculation of motion vectors

involves analysing the difference between two successive frames, and attempting to

minimise that difference by finding motion among items in the frame. Block based

motion estimation is the technique of splitting the reference and destination frames

into equal areas (blocks) and searching for each reference block occurring at an

offset location in the destination frame. By finding as close a match as possible, it

 31

allows for the efficient construction of the target frame using the reference frame

(already known), the motion vectors to apply to it and then the residual difference

between the predicted image and the intended target image. The objective is to

reduce the residual to as little as possible, resulting in a compacted datastream. Block

based motion estimation was used in this instance, with exhaustive full search with

single pixel accuracy within the defined search window. The Exhaustive Block

Matching Algorithm (EBMA) is not an efficient method, since it searches every

possible offset with no weighting or guidance; however, it does provide accurate

results, not falling prey to local minima as other algorithms may. Only forward

motion estimation is considered in this dissertation; other permutations exist but are

not necessary to demonstrate the block matching facility.

 3.5.1 Motion Estimation within Video Compression

 Calculating the motion vectors comprises one major part of the general video

compression task for most video compression and transcoding methods. After the

motion vectors have been found, the predicted image is constructed, compared

against the destination, or target frame and a DCT operation of the residual data is

usually required thereafter. Most implementations of full video compression involve

run length encoding to further compress the datastream. With respect to the

following diagram, the implementation presented here constitutes the Motion

Estimation and Motion Compensation sections:

 32

Motion Estimation within Video Encoding

Figure 9. Source: Bhaskaran and Konstantinides, 1997.

 Note: in the above diagram, I is the image stream, x and y are the horizontal

and vertical components, t is the time slice and e is the image difference.

 3.5.2 Implementation on a GPU

 For this task, the choice of block size as 8 pixels was selected. This is a

relatively small block size as the more often quoted block size is 16 pixels. The

number for block size refers to the number of pixels on one side of the block. A

smaller block size is associated with more computationally expensive routines, but

suited the GPU implementation as 64 texture calls were required for each of the

reference and destination textures, approaching the limit of operations which a

fragment processor can handle on today’s commodity GPU. A block size of 16 pixels

was found to require more temporary registers on the GPU than were available;

resulting in compile errors.

 33

 In this program, a search window of 7 pixels was chosen. This was selected

as it represented sufficient distance to capture most of the motion occurring in the

test sequences. The search window is the maximum pixel distance with which the

destination frame is offset in either the horizontal or vertical axes, while attempting

to match against a reference frame. As the search window n is increased, the number

of computations scales as (2n+1)2.

 To compare the reference block with the destination’s offset block, the two

block-sized images are subtracted and their absolute difference is evaluated. A

number of methods may be chosen such as Sum Absolute Difference (SAD) or Mean

Square Error (MSE). The SAD method was chosen for this implementation as it

accurately reflects the magnitude of difference at the currently tested offset, while

minimising the computation required. In the GPU implementation, 8-bit formats

were used, so in order to minimise the occurrences of truncation at 255, the values of

the SAD were divided by 4 (a configurable scale within the program).

 The reference and destination frames were first identified (loaded from

bitmap file format in this instance) and from there the motion vector search was split

into four major stages, as follows:

• Calculate an image subtraction of the two input textures (one is the reference

and the other is the currently offset target) and write the output to a third

texture.

• For each 8*8 pixel block, sum the difference (by reading the third texture)

• Compare the block summations to those found so far and record if lower

• Record the offset used to find the current lowest SAD for each block

 After doing the above steps for each offset in the window of search area, the

resultant array of offsets recorded denotes the motion vectors associated with that

frame pair. The following diagram illustrates the block matching activity, where R is

the search window and d is the motion vector found:

 34

Exhaustive Block Matching Algorithm

Figure 10. Source: wwwWAN

 3.5.3 Implementation on a CPU

 The calculation of motion vectors, performed on the CPU, was completed

with the addition of a function to the main GPU program. The intention of the CPU

function is to replicate the basic methods employed in the GPU sections. While this

is likely not optimal it was chosen for this dissertation as it forces both the CPU and

GPU to do a more equal number of calculations in the task.

 35

4. Results

 4.1 Test Conditions

 A series of DOS batch scripts (called runTest.bat) were written to facilitate

the execution of the tests. This permitted the passing of command line parameters

and increased the portability of the test suite. Both platforms described below reflect

commodity mainstream graphics cards, RAM and high performance CPUs.

Microsoft Windows XP was the operating system in use for both scenarios.

• Testing Platform 1:

 The CPU was a Pentium 4 Extreme Edition running at 3.88GHz with

HyperThreading enabled, in conjunction with 1GB of DDR2/533 RAM. The GPU

used was an ATI Radeon 9600 with a core speed of 400MHz and 4 pixel processors.

• Testing Platform 2:

 The CPU was a Pentium D 840 Dual Core, running at 3.2GHz without

HyperThreading, in conjunction with 0.5GB of DDR2/533 RAM. The GPU used was

an ATI Radeon X1300 with a core speed of 450MHz and 4 pixel processors.

 4.2 Sorting

 For the GPU times recorded, the test invoked 10 iterations of the full sorting

process. After the first sort was complete, that output is used as the input to the next

sort. This sorting algorithm has equal best and worst case timings, however for the

CPU sorting routines, their initial sanity checks quickly reveal that an already sorted

array does not require further sorting work, so the process of simply looping the sort

routine for those scenarios was not suitable, hence only one iteration was performed.

 The input for each of the sorting operations was the same “input-255.txt” file.

This file contained over 1 million integers, between the values of 0 and 255. This file

was created by a separate ancillary program utilising the C random function. The

numbers of actual items which were loaded and subsequently sorted were 2562 and

512
2
 because these suit the lowest common denominator, power of two texture sizes

for the GPU. While this is a concession to the GPU implementation it may be noted

that non-power of two textures are becoming part of commodity graphics card

 36

capabilities so this will not be an issue in the future. The resultant timings recorded

exclude file operations and were measured with the intention of reflecting only the

computational time spent by each method. For the following results, lower times are

better, indicating faster completion of the sort. The below graph summarises the

performance of each hardware option for sorting an input of 5122 items. It can be

seen that the GPU implementation performs favourably with the model CPU sorting

routines of Qsort and std::sort.

Sorting Times

0

0.5

1

1.5

2

2.5

3

CPU Qsort

1

CPU Qsort

2

GPU 1 GPU 2 CPU

std::sort 1

CPU

std::sort 2

Testing Hardware

T
im
e
 /
 s
e
c

Figure 11. Source: Appendix 1.2.

 Not included in the above graph, are the bitonic sorting results of the CPU

based section of the implementation presented here, which were an order of

magnitude larger (24 and 30 seconds) than the above values. It was found that the

GPU based implementation processed the input 45 times faster than the CPU based

bitonic implementation. The CPU based implementation was not optimal, as

demonstrated by the performance of the other CPU bound Qsort and std::sort;

however these standard C libraries are highly optimised and employ faster algorithms

such as modified QuickSort.

 37

 4.3 Motion Estimation

 The motion estimation implementation enacted an exhaustive block matching

with a block size of 8 pixels and a search window of ±7 pixels. For the tests

conducted, three video sequences were used, with 25 frames being used for each

sequence. For each of these frame pairs, the motion estimation procedure was

evaluated. The input images were 256 by 256 pixels each and only in one colour

plane (grayscale). A single program was used which exercised the algorithm on each

of the GPU and CPU in turn, recording the time required for each. The algorithm

employed is implemented in four stages (described above) which map to each of four

fragment shader programs. The number of texture calls and variables employed in

some of the shader programs exceeded the limits for the ATI Radeon 9600 GPU so it

could not be used for this particular implementation.

 The primary intention of acquiring motion vectors is so that they may be used

at the video decoding stage to create a predicted image which is as close as possible

to the target frame. The following three images in figure 12, from the Coast Guard

sequence demonstrate the effect of motion estimation achieved in this

implementation:

 38

Frame Prediction

Origin Frame: Target Frame:

Predicted Frame:

 Figure 12. Source: Coast Guard video sequence

 The above images appear similar; such is the effect of temporal redundancy

in video images, whereby consecutive frames in a video sequence do not change very

much. The value of the motion vectors can be observed qualitatively though at some

high change areas. For example, at the left edge of the frame, the predicted image has

successfully compensated for the tail end of the other boat disappearing out of view,

leaving a wave after it. Less noticeable however, is the scanning effect of only 5

pixels from right to left (as time progresses from origin to target frame). This

scanning has been compensated for and as demonstrated below has a quantitative

benefit.

 39

 To better demonstrate the effect of the motion compensation occurring, two

difference images were generated by the GPU-CPU-video program. In the difference

image, a black area indicates both frames closely resemble each other quantitatively,

and a white area indicates a difference. The aim of motion estimation is to reduce the

quantitative difference (and thus the white areas in the difference images). The first

image below is an absolute difference between the origin image and the target image.

This gives an indication of the amount of data which a video file would need to store

in order to generate the target frame. The second image is an absolute difference

between the predicted frame and the target frame. This gives an indication of the

residual information which a video file must contain in order to generate the target

frame while using the motion vectors.

 From the images in figure 13 below, it can be appreciated that the motion

estimation was successful in reducing the amount of residual information (appearing

as white areas) which requires encoding. The following two images have been

gamma corrected by a factor of +1.5 to accentuate the differences being highlighted.

Image Differences

Figure 13. Source: GpuCpuVideo.exe output

 The array of motion vectors found for a sample frame pair was exported to

Matlab wherein a 2D image of the velocity vectors they embody was produced. The

image demonstrates the central area of the coast guard vessel which is not moving

much inside the frame of the video, the upper background which is moving right to

left and the lower foreground depicting chaotic surf atop a generally right to left

scanning waterline. The reason the arrows point right as the video scans from left to

right indicates that for the predicted image, a given block is composed of a motion

 40

vector which tells the decoder where to find the best matching offset block in the

origin frame.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Motion Vector grid for frames 24 and 25 of COA sequence

Motion Vector X axis/blocks

M
o
ti
o
n
 V
e
c
to
r
Y
 a
x
is
/b
lo
c
k
s

Figure 14. Source: GpuCpuVideo.exe output

 The following image, in figure 15, is composed of the motion vectors

superimposed upon the origin frame. The small motion vectors in the central boat

region indicate that as the video sequence progresses, the boat stays relatively still, in

the centre of the image, whereas the background is almost uniformly scanning from

right to left.

 41

Origin Frame with Superimposed Motion Vectors

Figure 15. Source: GpuCpuVideo.exe output

 42

 For each pair of images in a video sequence which were processed by the

program, a portion of text was output to file. One such sample is given in figure 16:

Sample Video Result

Start of results -------------

Input files:Data\FOR\for00.bmp and Data\FOR\for01.bmp

GPU performance:

0.188000 seconds for 1 iterations.

0.188000 seconds per iteration.(5.3 FPS)

Using a search window of 225 positions.

1196.809 full image permutations per second evaluated.

Block size of 8 in an image of size:256 by 256.

78434040 block permutations per second evaluated.

CPU performance:

0.812000 seconds for 1 iterations

0.812000 seconds per iteration.(1.2 FPS)

Motion Vectors matched in 1024 of 1024 instances.

Image difference 1 (image 1 and 2):PSNR: 25.454 (dB), SAD: 483475

Image difference 2 (image 2 and constructed):PSNR: 36.939 (dB), SAD: 129894

Figure 16. Source: GpuCpuVideo.exe output

 The output details two image frames which are being evaluated at this stage.

Firstly the GPU motion vector method produces its timing results and a listing of the

image/block dimensions. Secondly the CPU motion vector timings are given. After

this, a comparison of the two sets of motion vectors yields a count of the number of

matching vectors. Finally, two lines are output detailing the qualitative evaluations of

the differences between the original frame versus the target frame, and the

predicted/constructed frame versus the target frame.

 4.3.1 Process Quality

 Within the program, the constructed frame is generated by using the origin

frame and superimposing the motion vector adjusted block upon it. As the Sum

Absolute Difference decreases for the predicted image versus the target image, this

proves the motion vectors successfully decreased the amount of residual information

 43

which is required to be encoded for video compression. The above output format was

generated for each image pair, in each of the three video sequences. The following

graph demonstrates the reduction in Sum Absolute Difference after the motion

estimation has been performed for one of the video sequences:

Sum Absolute Difference: Foreman sequence

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frame

S
A
D
 v
a
lu
e

FOR:Before FOR:After

Figure 17. Source: Appendix 2.3

 As the sum absolute difference decreases after the motion compensation, the

PSNR (Peak Signal to Noise Ratio, equation provided in glossary) of the difference

image of the pair correspondingly increases. The PSNR figure is a common

measurement for quantising the information contained in images. In this situation the

PSNR value is being calculated from the image difference of the origin frame versus

the target frame, and the origin frame versus the predicted frame. The following

figure demonstrates the increase in PSNR after the motion vectors have been found

and applied:

 44

PSNR of difference images: Foreman sequence

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frame

P
S
N
R
/d
B

FOR:Before FOR:After

Figure 18. Source:Appendix 2.5.

 The number of motion vectors which matched between the two methods of

calculation (GPU and CPU) was tracked. With 75 images evaluated and 1024 blocks

per image, a total of 76800 motion vectors were calculated by each method. The

motion vectors matched for 76773 of those, accounting for a 99.965% correlation

between the two methods. The slight differences may be due to rounding errors and

boundary scenarios such as blocks at the image edge. Further investigation into this

minor divergence was not pursued.

 4.3.2 Process Speed

 One of the primary aims of this undertaking was to examine if the GPU could

complete the motion estimation algorithm in a time comparable to the CPU. The

timings results for this implementation found that the GPU actually completed the

task in much less time than required for the CPU. The condensed timing results for

the calculation of motion estimation on both the GPU and CPU is summarised in the

following diagram which dramatically conveys the margin by which the GPU

completed its calculations six times faster than the CPU:

 45

Time to process video sequence

0

5

10

15

20

25

Foreman Mother and Daughter Coast Guard

Video Sequence

T
im
e
 /
 s
e
c

GPU

CPU

Figure 19. Source: Appendix 2.1.

 Anecdotally, for an additional perspective, the video sequence test was run on

a high performance graphics card, the ATI Radeon X1900XGT, and the results were

captured. The results showed a 2.1 times speedup over the X1300 timings (i.e. the

test completed in under half the time required for the X1300) and is demonstrated in

the following graph of the findings:

 46

Time to process video sequence (X1900 inclusive)

0

5

10

15

20

25

Foreman Mother and

Daughter

Coast Guard

Video Sequence

T
im
e
 /
 s
e
c

X1900XGT GPU

X1300 GPU

Pentium 4 CPU

Figure 20. Source: Appendix 2.7.

 4.4 Stress Testing

 For this dissertation, the primary focus was to examine the applicability of

computationally intensive algorithms running on a GPU. For programs which are

being designed to run on a GPU, the intention is that the CPU based components of

the programs take care of data delivery to the GPU, file handling, output

management and miscellaneous tasks such as input value parsing. Thus the initial

checks to confirm all input data for the GPU based routines is suitable are to be

completed by the CPU. For this reason the GPU programs implemented here do not

perform input value checking such as confirming the input video frames are of the

correct dimensions etc.

 Since this dissertation is concerned with the performance of the hardware to

complete the tasks, a selection of under-clocking and over-clocking experiments

were conducted. The ATI Tray Tool program was used to adjust the core clock speed

of the GPU and the memory access speed on the graphics card. The normal speed of

the GPU memory is 300MHz for the ATI Radeon 9600Pro. By adjusting the memory

speeds over a range from -20% normal to +10% normal, no difference was observed

 47

in the time taken for the GPU based sorting program. This indicates that the program

is not memory bound, so latencies of the texture fetches appear to not be the limiting

factor.

 Adjusting the core frequency of the GPU was observed to have dramatic

effects. For the ATI Radeon 9600Pro, a 50% over-clock of the 400MHz GPU core

frequency resulted in a 35% faster runtime (i.e. Completed in 65% of the original

time taken). Faster over-clocks ad-infinitum for even more performance gains were

not feasible as the processor crashes beyond these points. The following two graphs

demonstrate these findings:

Time to Sort 65536 Items: ATI 9600 Pro

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

3
2
0

3
4
0

3
6
0

3
8
0

4
0
0

4
2
0

4
4
0

4
6
0

4
8
0

5
0
0

5
2
0

5
4
0

5
6
0

5
8
0

6
0
0

GPU Core Frequency / MHz

T
im
e
 /
 s
e
c

Figure 21. Source: Appendix 2.8.

Time to Sort 65536 Items: ATI X1300

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

4
0
0

4
2
0

4
5
0

4
7
0

5
0
0

5
2
0

5
5
0

5
7
0

6
0
0

GPU Core Frequency / MHz

T
im
e
 /
 s
e
c

Figure 22. Source: Appendix 2.8.

 48

5. Conclusion:

 5.1 Commentary of Results

 From the results obtained in the implementation presented here, the

commodity graphics cards proved they are serious contenders for sheer processing

speed in certain circumstances and the programming of them is both feasible and

practical.

 The GPU based sorting program demonstrated processing power 45 times

that of an equivalent CPU implementation, however the nature of the bitonic sorting

algorithm appears more suited to the GPU framework than the CPU. The GPU based

bitonic sorting program achieved sorting times faster than the C Qsort library and

approached that of the C++ std::sort library. As an opportunity for future work, the

GPU sorting program could be made more modular, such as that of a dynamically

linked library and thus usable by any mainstream programmer who wishes to benefit

from the coprocessing power of the GPU, without troubling with the specifics of the

actual GPU programming techniques. The sorting program implemented here

produced quantitative results which can be compared against other published results

of groups who have produced GPU sorting solutions. For comparison, the following

published results for sorting times of 262144 (512
2
) items is given in the following

graph (figure 23):

 49

Sorting Times Comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B
u
c
k
 a
n
d
 P
u
rc
e
ll

(2
0
0
4
)

P
re
s
e
n
te
d
 h
e
re
,

A
p
p
e
n
d
ix
 X

G
o
v
in
d
a
ra
ju
 a
n
d

R
a
g
h
u
v
a
n
s
h
i
e
t

a
l.
 (
2
0
0
5
)

G
o
v
in
d
a
ra
ju
 a
n
d

L
in
 e
t
a
l.
 (
2
0
0
5
)

K
ip
fe
r
a
n
d

W
e
s
te
rm

a
n
n

(2
0
0
5
)

G
o
v
in
d
a
ra
ju
 a
n
d

R
a
g
h
u
v
a
n
s
h
i
e
t

a
l.
 (
2
0
0
5
)

G
o
v
in
d
a
ra
ju
 a
n
d

L
in
 e
t
a
l.
 (
2
0
0
5
)

K
ip
fe
r
a
n
d

W
e
s
te
rm

a
n
n

(2
0
0
5
)

Implementation

T
im
e
 /
 s
e
c

Figure 23. Source: Appendix 1.3

 From the above graph it can be seen that the implementation presented here

performed within the region of recently published results of GPU sorting. There are

many optimisations which could have been implemented or factors altered to

increase the performance, but were not included in the GPU sorting program

presented here. Examples of such differences include:

• Over-clocking the core frequency showed large gains in performance, but is

not included in the figure 23 data as it is not guaranteed to be reproducible on

other hardware.

• The fragment shader code in this implementation was not hand-optimised, but

rather the natural output of the Cg compiler was used.

• Performance testing of the available Cg standard library functions was not

pursued, so optimisations may be available in the Cg code.

• The algorithm employed was the simpler version of Bitonic sort, rather than

more complex, higher performing versions.

 50

• Data-Packing, whereby multiple items of data can be stored in each of the 4

components per pixel, was not implemented.

• The implementation presented here is based on results from a commodity

graphics card of only 4 pixel processors, whereas the other results are based

on high-end graphics cards with 8, 16 and 24 such pixel processors.

 The motion estimation results fared well also, displaying performance 6 times

that of the CPU. While the Exhaustive Block Matching Algorithm is not optimal, it

was implemented equally on both CPU and GPU. As a future opportunity, both

implementations could be engineered to employ another of the more efficient block

matching algorithms. Most of the aforementioned optimisations for GPU sorting also

apply to the Motion Estimation GPU implementation, such as data packing, so

further gains may be achievable.

 The process of block matching for Motion Estimation has thus been shown to

be viable for GPU implementation. As an opportunity for future work, the GPU

Motion Estimation could be combined with GPU based DCT and IDCT as described

by Green (2005) and Fang et. al. (2004) to create a GPU accelerated video

transcoding program which could convert video files of one format (such as low

compression MPEG2) to other formats (such as highly compressed MPEG4).

 5.2 Short Term Technical Improvements:

 To demonstrate the pace of advancement in the graphics industry, the

following was a list of short term goals identified by Hanrahan in 2002 (wwwHAN2)

as those which could aid the development of GPGPU applications:

• Full Set of arithmetic operators.

• Multiple Outputs (live variables, stream outputs).

• Conditional Branching.

• Floating point precision.

To a general extent, these have already been met, with current graphics cards

able to claim support for each of the above items. This indicates the blistering pace at

which the graphics industry is evolving, where the notional wishes of a commentator

 51

in the field are converted into usable features of commodity GPUs in a few short

years.

In addition to the primary hopes for the GPU future of increased operating

frequencies and larger memories, Goodnight et al. (2003) also describe functionality

in a GPU which would be of benefit as “superbuffers” (or at least cheaper context

switching), more development tools such as debuggers, documentation and a global

accumulator. Again, advances have been made for each of these points.

During the implementation phase of this dissertation a number of limits were

encountered which could be alleviated by GPU developments which would allow

finer granularity branching, so that the inclusion of an “if…else” condition is not so

expensive, and an increased number of high speed temporary registers. There are

currently only 32 such registers on an ATI Radeon 9600 thus limiting the breadth of

computation which can be performed in a single pixel shader pass. These limits were

circumnavigated by altering the algorithms but hardware support for the more

general purposes of GPGPU would be beneficial.

 The next revolution in GPU hardware for mainstream PCs is set to arrive with

DirectX 10 and Shader Model 4.0 GPUs, bringing with it the “unified shader

pipeline” which effectively redesigns the infrastructure of the programmable shaders.

Shader processors will become generic and configurable, so that they can

dynamically change from operating as a vertex shader one moment to being a pixel

shader the next; thus permitting more flexibility in the hardware to meet the

application’s demands. Technology commentators such as Freeman have described

some of the other changes upcoming in the hardware pipeline (wwwFRE):

The new pipeline adds some features to the mix including a Geometry Shader

and Input Assembler. The former intercepts the data flow between the Vertex and

Pixel Shaders and can add geometry effects on the fly; the latter is a way of taking

graphics processing unit (GPU) data and directing it to various stages without using

CPU resources.

Microsoft’s upcoming release of Windows Vista will bring with it certain

requirements which will increase demand for DirectX 10 capability on the PC.

 52

 5.3 Rasterisation and Ray-Tracing

 Current GPUs are mainly concerned with the rasterisation method of graphics

generation. It is the technique whereby primitives such as triangles or quadrilaterals

are input to the GPU, which it orients and converts into pixel sized fragments which

determine how the pixels will appear onscreen. There is a competing method of

graphics generation called ray-tracing which is the method of simulating many

individual rays of light through the modelled environment and then displaying the

calculated resultant view. This method has been mainly the preserve of offline-

rendering, used for creating animation films etc., not viable for the 60 frames per

second arena of gaming. The rasterisation method is what current real-time GPUs

have become optimised for, thus ensuring their widespread commercial value. When

predicting long term future trends however, there are reports that this trend could be

reversed in a transition to real time ray-tracing, or at least a symbiosis of both

methods. Some figureheads of the industry speak of it as a possibility, such as Hurley

(2005), a researcher at Intel:

 Ray tracing has long been considered too expensive for mainstream

rendering purposes. Movie production studios have only recently begun the

transition to using it; however, the true cost of ray tracing has been very poorly

understood until recently. It is now poised to replace raster graphics for mainstream

rendering purposes.

 If ray tracing becomes part of real time graphics, this could encourage radical

changes in the nature of GPU hardware, likely to the benefit of GPGPU efforts, but if

it occurs on the CPU then it could signal another revolution in the Wheel of

Reincarnation, where the task of graphics is subsumed again within the CPU

envelope. GPGPU methods however, offer the chance of GPU ray tracing; Purcell et

al. (2002) have already shown that it is possible to use GPGPU techniques to perform

ray-tracing on programmable GPUs and propose a possible path for smooth

transitioning to include ray-tracing:

 While many believe a fundamentally different architecture would be required

for real-time ray tracing in hardware, this work demonstrates that a gradual

convergence between ray tracing and the feed-forward hardware pipeline is

possible.

 53

 5.4 Future Outlook

If GPGPU applications gain more of a foothold, their prominence may begin

to influence the hardware vendors, who may in turn begin to provide dedicated

hardware solutions to some of the current obstacles (such as scatter writing to

random memory). For example, the GPU vendors could leverage their mass

production capabilities to include custom physics and AI engine hardware into their

GPU infrastructure, in order to compete with the PPU manufacturers. The currently

prevalent option is that Havok, or a similar company/product can satisfy the market

demand for such non-graphics computations via processing on the GPU, utilising the

current graphics oriented pipeline.

GPUs are beginning to appear in embedded systems such as mobile phones.

OpenGL ES (Embedded Systems), one governing standard in this field, is a

simplified version of the primary specifications, which has already been declared for

such devices. Similar to the PC situation, the GPU of these devices is a powerful co-

processor. Its usefulness in a GPGPU scenario has not been explored though.

In July 2006 AMD announced that they would begin the process of merging

with ATI for an acquisition cost of US$5.4 Billion (wwwATI2). This merger between

the CPU and GPU mainstays is scheduled to finalise in 2006. How this will affect the

group dynamic between the other major parties (Intel and nVidia) is the source of

speculation in the media, such as Takahashi who notes “Because of that deal, the PC

landscape has changed forever. Now there is an imbalance as Intel, Nvidia, and

AMD-ATI try to find the centre of the future of computing” (wwwTAK). One GPGPU

perspective is that a hardware partnership between CPU and GPU could encourage

more previously CPU based tasks being ported to the GPU.

GPGPU applications are emerging as an exciting trend in leveraging extreme

processing power from widely available, cost effective hardware. The availability of

higher level languages with increased potency, such as Cg, combined with the

increasingly powerful GPU hardware and its proliferation to the PC community

bodes well for the future of this (currently) niche field.

 54

6. References

Backus, J., 1978, Can programming be liberated from the von Neumann style, ACM

Turing Award Lecture, Communications of the ACM, Vol. 21 Issue 8. p.613.

Batcher, K.E., 1968, Sorting Networks and Their Applications, AFIPS Spring Joint

Computing Conference 1968, pp.307-314.

Bhaskaran, V., Konstantinides, K., 1997, Image and Video Compression Standards,

Kluwer Academic Publishers; Boston, p.104.

Buck, I., 2005, Taking the plunge into GPU computing, in GPU Gems 2, Pharr, M.

(Ed.). Addison Wesley; NJ. p.509.

Buck, I, Fatahalian, K., Hanrahan, P., 2004, GPUBench: Evaluating GPU

Performance for Numerical and Scientifc Applications, ACM Workshop on

General Purpose Computing on Graphics Processors, ACM SIGGRAPH.

Buck, I., Purcell, T., 2004, A toolkit for computation on GPUs, in GPU Gems.

Addison Wesley; NJ. p.621,629.

Crow, T. S., 2004, Evolution of the Graphical Processing Unit, Master’s Thesis,

University of Nevada, Reno.

Du Toit, S., McCool, M. D., 2004, Metaprogramming Gpus with Sh, Peters, A. K,

Ltd., p.12.

Fang, B., Shen, G., Li, S., Chen, H., 2005, Techniques for Efficient DCT/IDCT

Implementation on Generic GPU, Proc. of 2005 IEEE International

Symposium on Circuits and Systems (ISCAS-2005); Kobe, Japan.

Fernando, R., Kilgard, M. J., 2003, The CG Tutorial: The Definitive Guide to

Programmable Real-Time Graphics, Addison Wesley; NJ. p.13,17,30,55.

 55

Goodnight, N., Wooley, C., Lewin, G., Luebke, D., Humphreys, G., 2003, A

Multigrid Solver for Boundary Value Problems Using Programmable Graphics

Hardware, Graphics Hardware 2003, San Diego.

Govindaraju, N. K., Gray, J., Kumar, R., Manocha, D., 2006, GPUTeraSort: High

Performance Graphics Coprocessor Sorting for Large Database Management,

Proceedings of ACM SIGMOD Conference, Chicago.

Govindaraju, N. K., Lin, M., Manocha, D., 2005, GPGP: General Purpose

Computations using Graphics Processors, HPEC 2005, University of North

Carolina, Chapel Hill. p.4.

Govindaraju, N. K., Raghuvanshi, N., Henson, M., Manocha, D., 2005, A cache-

efficient sorting algorithm for database and data mining computations using

graphics processors. Technical report, University of North Carolina, Chapel

Hill.

Green, S., 2006, GPU Physics, nVidia CEDEC at Game Developers Conference; San

Francisco.

Greß, A., Zachmann, G., 2006, GPU-ABiSort: optimal parallel sorting on stream

architectures, Parallel and Distributed Processing Symposium, 2006. 20th

International; Greece.

Hanrahan, P., 2004, Stream Programming Environments, GP2 Workshop, ACM

SIGGRAPH 2004; Los Angeles.

Harris, M., 2005, Mapping Computational Concepts to GPUs, in GPU Gems 2,

Addison Wesley; NJ. p.493.

Hurley, J., 2005, Ray Tracing Goes Mainstream, Intel Technology Journal 2005, vol.

8 Issue.2. Intel Corporation; Santa Clara.

 56

Kedem, G., Ishihara, Y., 1999, Brute Force Attack on UNIX Passwords with SIMD

Computer, Proceedings of the 8th USENIX Security Symposium 1999,

Washington D.C., pp.93-98.

Kiel, J., Dietrich, S., 2006, GPU Performance Tuning with NVIDIA Performance

Tools, Game Developers Conference 2006; San Jose.

Kim, T., Lin, M. C., 2003, Visual Simulation of Ice Crystal Growth,

Eurographics/SIGGRAPH Symposium on Computer Animation 2003; san

Diego.

Kipfer, P., Westermann, R., 2005, Improved GPU Sorting, in GPU Gems 2, Addison

Wesley; NJ., p.745.

Kolb, C., Pharr, M., 2005, Options Pricing on the GPU, in GPU Gems 2, Addison

Wesley; NJ., p.719.

Mark, W. R., Glanville, R. S., Akeley, K., Kilgard, M. J., 2003, Cg: a system for

programming graphics hardware in a C-like language, Proceedings of ACM

SIGGRAPH 2003, ACM Press; NY., p.896.

Micikevicius, P., 2005, GPU Computing for Protein Structure Prediction, in GPU

Gems 2, Addison Wesley; NJ., p.695.

Myer, T. H., Sutherland, I.E., 1968, On the Design of Display Processors,

Communications of the ACM, Vol. 11, no. 6., ACM Press; NY.

Owens, J. D., 2005, Streaming Architectures and Technology Trends, in GPU Gems

2, Pharr, M. (Ed.). Addison Wesley; NJ. p.460.

Owens, J. D., Luebke, D., Govindaraju N., Harris, M., Kruger J., Lefohn, A., Prucell,

T. J., 2005, A Survey of general-Purpose Computation on Graphics Hardware,

Eurographics 2005, State of the Art Reports, August 2005, pp.21-25.

 57

Proudfoot, K., Mark, W. R., Hanrahan, P., Tzvetkov, S., 2001, A Real-Time

Procedural Shading System for programmable Graphics Hardware,

Proceedings of ACM SIGGRAPH 2001, ACM Press; NY.

Purcell, T. J., Buck, I., William M. R., Hanrahan, P., 2002, ACM Transactions on

Graphics. Proceedings of ACM SIGGRAPH 2002, ACM Press; NY., pp. 703-

712.

Ruge, T. G., 2001, Hello 3D World, Linux Magazine, Linux New Media AG;

Munich. Issue 8, p.68.

Rumpf, M., Strzodka, R., 2001, Using Graphics Cards for Quantized FEM

Computations, Proceedings of VIIP 2001, pp.193–202, 2001.

Venkatasubramanian, S., 2003, The Graphics Card as a stream computer, SIGMOD-

DIMACS Workshop on Management and Processing of Data Streams 2003;

San Diego.

 58

 6.1 Internet References

wwwAMD

AMD (2006).

Software Industry Embraces AMD’s Upcoming PC Enthusiast Platform. Available

from: http://www.amd.com/us-

en/Corporate/VirtualPressRoom/0,,51_104_543_544~110132,00.html [Accessed 1st

Oct. 2006]

wwwATI

ATI Technologies Inc, (2006).

CrossFire: Multiply & Conquer. Available from:

http://www.ati.com/technology/crossfire/index.html [Accessed 1st Oct. 2006]

wwwATI2

ATI Technologies Inc., (2006).

AMD & ATI: A Processing Powerhouse. Available from: http://www.amd.com/us-

en/0,,3715_14197_14198,00.html?redir=goBG01 [Accessed 1st Oct. 2006]

www
AVI

ATI Technologies Inc., (2006).

ATI Avivo video converter. Available from:

http://www.ati.com/technology/avivo/technology.html [Accessed 1st Oct. 2006]

wwwBEN

Buck, I., Fatahalian, K., Houston, M., Foley, T., (2006).

GPUBench. Available from: http://sourceforge.net/projects/gpubench [Accessed 1st

Oct. 2006]

wwwBLA

Black, P. E., (2005).

Bitonic Sort, Dictionary of Algorithms and Data Structure, U.S. National Institute of

Standards and Technology. Available from:

http://www.nist.gov/dads/HTML/bitonicSort.html [Accessed 1st Oct. 2006]

 59

wwwDAW

Dawson, B., Walbourn, C., (2006).

Coding for Multiple Cores. Available from:

download.microsoft.com/download/5/b/e/5bec52bd-8f96-4137-a2ab-

df6c7a2580b9/Coding_for_Multiple_Cores.ppt [Accessed 1st Oct. 2006]

wwwDUB

Dubois, E., 2006.

Image Compression. Available from:

http://www.site.uottawa.ca/~edubois/courses/ELG5378/elg5378_notes_w06_ch5_pt1

.pdf [Accessed 1st Oct. 2006]

wwwFRE

Freeman, V., (2006).

Platform Trends: DirectX 10 and Next-Generation Graphics, Jupitermedia

Corporation. Available from:

http://www.hardwarecentral.com/hardwarecentral/reports/article.php/3616546

[Accessed 1st Oct. 2006]

www
GDE

Graphic Remedy, (2006).

Products: gDEBugger. Available from: http://www.gremedy.com/products.php

[Accessed 1st Oct. 2006]

wwwGLU

Kilgard, M. J., (1996).

The OpenGL Utility Toolkit (GLUT) Programming Interface API Version 3. Silicon

Graphics, Inc. Available from:

http://www.opengl.org/documentation/specs/glut/spec3/spec3.html [Accessed 1st

Oct. 2006]

 60

wwwGNU

Free Software Foundation, (2006).

GDB: The GNU Project Debugger. Available from:

http://www.gnu.org/software/gdb [Accessed 1st Oct. 2006]

wwwGRA

Gray, J., (2006).

Summary of 2006 Sort Entrants. Available from:

http://research.microsoft.com/barc/SortBenchmark/2006%20Summary%20Comment

s.mht

wwwGRE

Green, S., (2006).

GPU Physics. Available from:

http://developer.download.nvidia.com/presentations/2006/cedec/2006-cedec-gpu-

physics.pdf [Accessed 1st Oct. 2006]

wwwHAN

Hanrahan, P. (2004).

Stream Programming Environments. Available from:

http://www.graphics.stanford.edu/~hanrahan/talks/gp2/index.html [Accessed 1st Oct.

2006]

wwwHAN2

Hanrahan, P., (2002).

Why is Graphics Hardware so Fast. Computer Science Department, Stanford

University. Available from:

http://www.graphics.stanford.edu/~hanrahan/talks/why/walk004.html [Accessed 1st

Oct. 2006]

www
HAV

Havok Inc. (2006).

Havok FX. Available from: http://www.havok.com/content/view/187/77 [Accessed

1st Oct. 2006]

 61

wwwHAV2

Havok Inc. (2006).

Titles that use Havok Dynamics. Available from:

http://www.havok.com/content/blogcategory/29/73 [Accessed 1st Oct. 2006]

wwwHED

Hegde, M., Pemberton, D., (2005).

Ageia sets the record straight. Available from:

http://www.gdhardware.com/interviews/agiea/havoc/001.htm [Accessed 1st Oct.

2006]

wwwHEU

Heuston, M, (2006).

General Purpose Computation on Graphics Processors (GPGPU), Stanford

University. Available from:

http://graphics.stanford.edu/~mhouston/public_talks/R520-mhouston.pdf [Accessed

1st Oct. 2006]

www
INT

Intel Corp. (2006).

Intel Dual-Core Processors. Available from:

http://www.intel.com/technology/computing/dual-core [Accessed 1st Oct. 2006]

wwwISL

Isler, C., (2006).

DirectX Then and Now. Available from:

http://craig.theeislers.com/2006/02/directx_then_and_now_part_1.php [Accessed 1st

Oct. 2006]

 62

wwwKUM

Kumar, R., (2006).

Learning from GPUSort. Available from:

http://defectivecompass.wordpress.com/2006/06/25/learning-from-gpusort [Accessed

1st Oct. 2006]

wwwLIN

Lind, R., (1997).

3D Visualization on Personal Computers. Available from:

http://www.student.nada.kth.se/~d91-rli/rapport/thesis.html [Accessed 1st Oct. 2006]

wwwNVI

nVidia Corp. (2006).

SLI Zone home. Available from: http://www.slizone.com/page/home.html [Accessed

1st Oct. 2006]

www
OGL

OpenGL.org. (2006).

EXT_framebuffer_object. SGI Developer Central. Available from:

http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

[Accessed 1st Oct. 2006]

wwwOPE

OpenGL.org. (2006).

OpenGL Overview. OpenGL.org. Available from:

http://www.opengl.org/about/overview [Accessed 1st Oct. 2006]

wwwRIE

Riegel, E. (2006).

OpenGL ARB to Pass Control of OpenGL Specification to Khronos Group, Khronos

Group, Available from: http://www.intel.com/technology/computing/dual-core

[Accessed 1st Oct. 2006]

 63

wwwROB

Robins, N., (2001).

GLUT for Win32. Available from: http://www.xmission.com/~nate/glut.html

[Accessed 1st Oct. 2006]

wwwSDN

Sun Microsystems Inc. (2006).

Core Java, JavaDoc Tool, Sun Developer Network, Available from:

http://java.sun.com/j2se/javadoc/index.jsp [Accessed 1st Oct. 2006]

www
SOR

Department of Computer Science, UNC Chapel Hill. (2003).

GPUSort: High Performance Sorting using Graphics Processors, UNC Chapel Hill,

Available from: http://gamma.cs.unc.edu/GPUSORT [Accessed 1st Oct. 2006]

wwwSUN

Sun Microsystems Inc. (2006).

How to Write Doc Commentsfor the Javadoc Tool, Sun Developer Network,

Available from: http://java.sun.com/j2se/javadoc/writingdoccomments/index.html

[Accessed 1st Oct. 2006]

wwwTAK

Takahashi, D., (2006).

The Coming Combo Of The CPU And GPU, Ray Tracing Versus Rasterization.

Available from:

http://blogs.mercurynews.com/aei/2006/08/the_coming_comb.html#more [Accessed

1st Oct. 2006]

wwwTHG

Chung. H., (2006).

Multi-core processors may replace physics cards. Tom’s Hardware Guide.

Available from:

http://tomshardware.co.uk/2006/09/26/idf_fall2006_quadcore_gaming [Accessed 1st

Oct. 2006]

 64

wwwTHG2

Voelkel, F., Toepelt, B., (2006).

Intel's Core 2 Quadro Kentsfield. Tom’s Hardware Guide.

Available from:

http://tomshardware.co.uk/2006/09/26/idf_fall2006_quadcore_gaming [Accessed 1st

Oct. 2006]

wwwTOR

Torres, G., (2006).

ATI Chips Comparison Table, Hardware Secrets. Available From:

http://www.hardwaresecrets.com/article/131 [Accessed 1st Oct. 2006]

wwwTOR2

Torres, G., (2006).

nVidia Chips Comparison Table, Hardware Secrets. Available From:

http://www.hardwaresecrets.com/article/132 [Accessed 1st Oct. 2006]

wwwTRE

Trendall, C., Stewart, J., (2000).

General calculations using graphics hardware, with application to interactive

caustics. Available from:

http://www.dgp.utoronto.ca/~trendall/research/egwr00/egwr00.pdf [Accessed 1st

Oct. 2006]

wwwWAN

Wang, Y., (2003).

Motion Estimation for Video Coding. Available from: http://www-

inst.eecs.berkeley.edu/~ee290t/sp04/lectures/motion_estimation.pdf [Accessed 1st

Oct. 2006]

 65

7. Appendices

 7.1 Appendix 1. Sorting Results

 7.1.1 Appendix 1.1 Sample Sorting Output

 The following results relating to the GPU and CPU sorting programs were
recorded from testing platform 1 (ATI Radeon 9600):

Sample GPU Sort Output:

GPU Sort with 256*256 items over 10 iterations:
Starting GPU sorting.
Starting at 0.125000
Finished loop 1 of 10.
Finished loop 2 of 10.
Finished loop 3 of 10.
Finished loop 4 of 10.
Finished loop 5 of 10.
Finished loop 6 of 10.
Finished loop 7 of 10.
Finished loop 8 of 10.
Finished loop 9 of 10.
Finished loop 10 of 10.
Sorting time: 0.1500 seconds per iteration
 ...
--

Sample CPU Sort Output:

CPU Sort with 256*256 items:
STDsorted in 0.031000 seconds
Qsorted in 0.156000 seconds
finishing: Counter: 137 by 0 in Time 4.578 , fps:29.9

CPU Sort with 512*512 items:
STDsorted in 0.140000 seconds
Qsorted in 2.093000 seconds
finishing: Counter: 172 by 0 in Time 26.235 , fps:6.6

 66

 7.1.2 Appendix 1.2 Sorting Times Collated

Test Platform 1:
 Timings/seconds
 GPU CPU std::sort CPU Qsort CPU Bitonic
Number of Items
65536 =2562 0.150 0.031 0.156 4.578
262144 =5122 0.741 0.140 2.093 26.235

Test Platform 2:
 Timings/seconds
 GPU Time CPU std::sort CPU Qsort CPU Bitonic
Number of Items
65536 =256

2
 0.137 0.031 0.188 5.984

262144 =512
2
 0.673 0.172 2.422 30.453

 7.1.3 Appendix 1.3 Comparison with Published GPU Solutions

Time/
Seconds
to Sort
262144
Items Referenced From

Algorithm and Hardware
Employed

1.28 Buck and Purcell (2004)

Bitonic Merge Sort, GeForce FX
5900

0.673 Presented here, Appendix X

Bitonic Merge Sort, Radeon
X1300

0.302
Govindaraju and Raghuvanshi et
al. (2005) GPUSort, GeForce 6800 Ultra

0.208 Govindaraju and Lin et al. (2005)

GPU-ABiSort, GeForce 6800
Ultra

0.128 Kipfer and Westermann (2005)

Odd-Even Merge Sort, GeForce
6800 Ultra

0.08
Govindaraju and Raghuvanshi et
al. (2005) GPUSort, GeForce 7800 GTX

0.076 Govindaraju and Lin et al. (2005)

GPU-ABiSort, GeForce 7800
GTX

0.054 Kipfer and Westermann (2005)

Bitonic Merge Sort, GeForce
6800 Ultra

 67

 7.2 Appendix 2 Motion Estimation Results

 7.2.1 Appendix 2.1 Timings for Motion Vector Calculation

Image
pair GPU:FOR CPU:FOR GPU:MAD CPU:MAD GPU:COA CPU:COA

1 0.172 0.812 0.125 0.828 0.125 0.781

2 0.141 0.813 0.125 0.828 0.125 0.797

3 0.125 0.812 0.125 0.828 0.125 0.781

4 0.141 0.813 0.125 0.828 0.125 0.797

5 0.125 0.813 0.125 0.829 0.14 0.782

6 0.141 0.797 0.141 0.828 0.14 0.797

7 0.141 0.813 0.125 0.813 0.125 0.797

8 0.141 0.812 0.125 0.828 0.141 0.766

9 0.14 0.797 0.141 0.829 0.14 0.766

10 0.125 0.812 0.125 0.828 0.125 0.781

11 0.125 0.797 0.141 0.829 0.125 0.797

12 0.125 0.813 0.125 0.828 0.125 0.797

13 0.125 0.813 0.125 0.813 0.141 0.781

14 0.14 0.797 0.125 0.813 0.125 0.781

15 0.125 0.797 0.125 0.812 0.141 0.781

16 0.141 0.781 0.141 0.829 0.125 0.797

17 0.125 0.797 0.125 0.828 0.125 0.797

18 0.125 0.797 0.125 0.813 0.141 0.797

19 0.125 0.781 0.125 0.813 0.125 0.796

20 0.125 0.797 0.125 0.813 0.141 0.781

21 0.141 0.813 0.125 0.813 0.125 0.797

22 0.125 0.813 0.125 0.829 0.125 0.797

23 0.14 0.781 0.125 0.829 0.125 0.781

24 0.125 0.781 0.141 0.813 0.125 0.781

25 0.125 0.765 0.141 0.829 0.14 0.782

Totals 3.329 20.017 3.221 20.571 3.265 19.688

Speedup 6.012917 6.386526 6.030015

Total times taken to perform motion estimation on each video sequence

 GPU CPU

Foreman 3.329 20.017
Mother
and
Daughter 3.221 20.571
Coast
Guard 3.265 19.688

 68

 7.2.2 Appendix 2.2 Sum Absolute Differences Detail

Sum Absolute Difference for the difference images, before and after
motion estimation applied

FOR:Before FOR:After MAD:Before MAD:After COA:Before COA:After

483475 129894 225965 87451 796556 388997

538176 113474 243938 96893 786651 367615

383294 128824 232525 90961 803634 393224

510753 127676 215371 135506 813687 405585

517387 127439 281126 195343 805170 394358

296242 119683 348300 230405 903218 349182

356979 142886 284790 147975 1234294 394823

459318 159209 202390 116702 1534597 845757

558161 221922 146815 98856 1828011 1263065

498609 226192 162568 96270 1659661 510005

645428 204569 200059 105053 835693 367150

746612 183538 193928 114011 624869 349187

989337 292751 181542 107683 876409 355402

1023674 367425 169656 102836 1279745 491947

965433 457204 221707 113201 725207 285279

1073307 310311 219502 104489 764484 333962

975204 290231 212846 108497 834963 365048

1402278 521632 199602 114293 735931 270893

1329907 639211 192049 98656 819171 356073

778425 308545 188209 102209 934220 331066

630566 151927 173278 92647 1157102 362779

375212 133857 160774 104671 1009360 254899

1184891 255845 160227 94244 1011468 347888

1527495 504132 189434 102161 1005006 355414

1767229 669659 175133 95743 1078734 313403

 69

 7.2.3 Appendix 2.3 Sum Absolute Differences Graphs

Sum Absolute Differences Graph: Video Sequence 1 (FOR)

Sum Absolute Difference: Foreman sequence

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frame

S
A
D
 v
a
lu
e

FOR:Before FOR:After

Sum Absolute Differences Graph: Video Sequence 2 (MAD)

Sum Absolute Difference: Mother and daughter sequence

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frame

S
A
D
 v
a
lu
e

MAD:Before MAD:After

Sum Absolute Differences Graph: Video Sequence 3 (COA)

Sum Absolute Difference: Coast Guard sequence

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frame

S
A
D
 v
a
lu
e

COA:Before COA:After

 70

 7.2.4 Appendix 2.4 PSNR Values Detail

PSNR for the difference images, before and after motion estimation
applied

FOR:Before FOR:After MAD:Before MAD:After COA:Before COA:After

25.454 36.939 30.973 40.73 21.947 27.333

24.36 37.621 30.57 39.841 21.946 27.654

26.056 36.938 30.934 40.691 21.762 28.58

24.554 36.912 29.368 31.029 21.73 27.546

24.432 37.602 26.363 27.865 21.839 28.894

28.988 38.115 26.024 28.173 20.999 29.826

27.172 36.499 28.182 34.089 18.532 28.28

25.569 34.634 31.19 36.721 17.255 20.905

24.179 30.39 33.667 38.895 15.955 17.867

24.487 30.228 32.455 39.151 16.6 25.612

22.47 31.723 31.136 38.095 21.767 29.616

21.747 32.964 31.664 37.115 23.548 29.879

19.908 27.996 31.719 37.785 20.858 29.744

19.389 24.982 32.186 37.638 18.271 25.695

18.679 22.01 30.577 36.97 22.486 31.282

18.582 26.178 30.631 38.458 22.206 30.18

19.193 25.251 30.887 37.423 21.512 29.495

17.44 23.832 31.503 37.405 22.309 31.322

17.643 21.252 31.53 38.676 21.72 29.716

21.907 27.33 31.841 38.505 20.364 29.63

22.856 35.395 32.387 39.369 19.009 28.728

26.564 36.701 32.749 38.132 19.797 29.925

18.632 30.738 32.853 39.193 19.988 28.765

17.011 23.787 31.791 38.057 20.055 29.492

16.021 22.229 32.123 39.255 19.602 30.624

 71

 7.2.5 Appendix 2.5 PSNR Values Graphs

PSNR Value Graph: Video Sequence 1 (FOR)

PSNR of difference images: Foreman sequence

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frame

P
S
N
R
/d
B

FOR:Before FOR:After

PSNR Value Graph: Video Sequence 2 (MAD)

PSNR of difference images: Mother And Daughter sequence

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frame

P
S
N
R
/d
B

MAD:Before MAD:After

PSNR Value Graph: Video Sequence 1 (COA)

PSNR of difference images: Coast Guard sequence

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frame

P
S
N
R
/d
B

COA:Before COA:After

 72

 7.2.6 Appendix 2.6 X1900XGT Timings for Video Motion Estimation

Image
Pair GPU:FOR CPU:FOR GPU:MAD CPU:MAD GPU:COA CPU:COA

1 0.0624 0.7344 0.0562 0.7312 0.0594 0.8094

2 0.0626 0.7406 0.0594 0.7282 0.0718 0.872

3 0.0594 0.7314 0.0594 0.7532 0.0624 0.7968

4 0.0594 0.7314 0.0594 0.725 0.0656 0.8626

5 0.0594 0.722 0.0656 0.7436 0.0592 0.8406

6 0.0594 0.7718 0.0594 0.778 0.0624 0.853

7 0.0594 0.8 0.0656 0.8374 0.0686 0.875

8 0.0624 0.7562 0.0626 0.8312 0.0626 0.7938

9 0.0626 0.7842 0.0656 0.85 0.0624 0.7656

10 0.0718 0.8156 0.0624 0.8188 0.0626 0.825

11 0.0688 0.875 0.0562 0.7592 0.0656 0.8

12 0.0656 0.828 0.0562 0.75 0.0688 0.8562

13 0.0688 0.8156 0.0562 0.7562 0.0626 0.8124

14 0.0656 0.7688 0.0562 0.7562 0.0626 0.7624

15 0.0686 0.928 0.0594 0.7406 0.0594 0.7626

16 0.0656 0.7874 0.0562 0.7968 0.0594 0.7408

17 0.0782 0.878 0.0564 0.822 0.0594 0.7594

18 0.0626 0.7438 0.0656 0.8314 0.0594 0.7438

19 0.0658 0.7688 0.0626 0.8282 0.0626 0.7532

20 0.0624 0.875 0.0594 0.7688 0.0562 0.7562

21 0.0626 0.828 0.0594 0.753 0.0594 0.7342

22 0.0656 0.9092 0.0624 0.7562 0.0594 0.7406

23 0.0656 0.8062 0.0594 0.7594 0.0594 0.7468

24 0.0688 0.8062 0.0564 0.7532 0.0592 0.7656

25 0.0624 0.7186 0.0594 0.7936 0.0592 0.7406

Totals 1.6158 19.9242 1.497 19.4214 1.5496 19.7686

Speedup 12.330858 12.973547 12.757228

 7.2.7 Appendix 2.7 Total Times for Motion Estimation

 X1900XGT X1300 P4 840D

 GPU GPU CPU

Foreman 1.6158 3.329 20.017

Mother and Daughter 1.497 3.221 20.571

Coast Guard 1.5496 3.265 19.688

Speedup of X1900XGT
over X1300 2.105139

 73

 7.2.8 Appendix 2.8 Stress Testing:

Core Clock Frequency Adjustments

GPU: ATI Radeon 9600 Pro

Normal core frequency: 400 MHz

Core Frequency / MHz Time to Sort 65536 items / sec

320 0.1860

340 0.1766

360 0.1656

380 0.1578

400 0.1500

420 0.1422

440 0.1359

460 0.1297

480 0.1235

500 0.1188

520 0.1141

540 0.1109

560 0.1063

580 0.1032

600 0.0984

Core Clock Frequency Adjustments

GPU: ATI Radeon X1300

Normal core frequency: 450 MHz

Core Frequency / MHz Time to Sort 65536 items / sec

400 0.1515

420 0.1453

450 0.1359

470 0.1296

500 0.1234

520 0.1187

550 0.1109

570 0.1093

600 0.1031

 74

 7.3 Appendix 3. Source Code: Sorting

 7.3.1 Appendix 3.1 GPU Sorting: GPUbitonicSort.cpp

 The following code is from GPUbitonicSort.cpp. This program sorts an input

file of integers using the GPU.

/**
 * Bitonic Sorting on the GPU.
 * GPUbitonicSort.cpp
 * This program enacts the Bitonic sorting alorithm using OpenGl
 * and the GPU processor to sort an inputted list of integers.
 *
 * @param inputfile The file containing integers to be sorted
 * @param imageSize The magnitude of 1 side of the array used
 * @param numberOfTestsToRun The iterations to rerun
 * @param debugFlag 1:On,Enable visualisations onscreen. 0:Off
 * @return A successfule exit(0) signal.
 *
 * @author Jason Ruane, DIT Bolton St. Dublin, Ireland. B773.2006.
 * @version 1.0
 */

// Preprocessor directives
// Invoke the Cg and OpenGL libraries required
#ifdef _MSC_VER
#pragma comment(lib, "cg/lib/cg.lib")
#pragma comment(lib, "cg/lib/cgGL.lib")
#endif
#pragma comment (lib, "opengl32.lib")

// Implementation specific items
#define maxArraySize 256 // Size of the image array
#define SleepTime 0 // Milliseconds to allow CPU to

pause
#define maxString 512 // The maximum of characters in

command line parameters

// Include files required
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <windows.h>
#include <winbase.h>
#include <assert.h>
#include <math.h>

// Include Cg requirements
#include "cg/include/Cg/cg.h" // Cg runtime

API
#include "cg/include/Cg/cgGL.h" // OpenGL-

specific Cg runtime API
#include "cg/include/GL/glext.h" // Local header

file for GL extensions
#include "cg/include/GL/glut.h" // Glut and

OpenGL api

// EXT_framebuffer_object related definitions
// as per - http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
extern PFNGLISRENDERBUFFEREXTPROC glIsRenderbufferEXT = NULL;
extern PFNGLBINDRENDERBUFFEREXTPROC glBindRenderbufferEXT = NULL;
extern PFNGLDELETERENDERBUFFERSEXTPROC glDeleteRenderbuffersEXT = NULL;

 75

GPUbitonicSort.cpp, continued.

extern PFNGLGENRENDERBUFFERSEXTPROC glGenRenderbuffersEXT = NULL;
extern PFNGLRENDERBUFFERSTORAGEEXTPROC glRenderbufferStorageEXT = NULL;
extern PFNGLGETRENDERBUFFERPARAMETERIVEXTPROC

glGetRenderbufferParameterivEXT = NULL;
extern PFNGLISFRAMEBUFFEREXTPROC glIsFramebufferEXT = NULL;
extern PFNGLBINDFRAMEBUFFEREXTPROC glBindFramebufferEXT = NULL;
extern PFNGLDELETEFRAMEBUFFERSEXTPROC glDeleteFramebuffersEXT = NULL;
extern PFNGLGENFRAMEBUFFERSEXTPROC glGenFramebuffersEXT = NULL;
extern PFNGLCHECKFRAMEBUFFERSTATUSEXTPROC glCheckFramebufferStatusEXT =

NULL;
extern PFNGLFRAMEBUFFERTEXTURE1DEXTPROC glFramebufferTexture1DEXT = NULL;
extern PFNGLFRAMEBUFFERTEXTURE2DEXTPROC glFramebufferTexture2DEXT = NULL;
extern PFNGLFRAMEBUFFERTEXTURE3DEXTPROC glFramebufferTexture3DEXT = NULL;
extern PFNGLFRAMEBUFFERRENDERBUFFEREXTPROC glFramebufferRenderbufferEXT =

NULL;
extern PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVEXTPROC

glGetFramebufferAttachmentParameterivEXT = NULL;
extern PFNGLGENERATEMIPMAPEXTPROC glGenerateMipmapEXT = NULL;

// Function declarations
void reshape(int w, int h);
void keyb(unsigned char k, int x, int y);
void loadImage(void);
void loadFile(void);
void initialise(void);
void display(void);
void saveFile(void);
void cgErrorCallback(void);
bool checkFramebufferStatus(void);

// Global variables required throughout
int writeTex = 0, toggleTex=0, readTex=1, actualAttachment, myPass,

myLoop=1;
int debug=0, testsToRun, testsRan=0;
float myTemp2[4]; // a parameter being passed to the CG shader
float myTemp[4]; // a parameter being passed to the CG shader
float counter=0; // count the frames rendered
// Timing for frames
double startTime,endTime, timeForUpdate=0, gpuStart;
// Dimensions of the image array used
float checkImageWidth,checkImageHeight;
// OpenGL related global variables
GLenum attachmentpoints[] = { GL_COLOR_ATTACHMENT0_EXT,

GL_COLOR_ATTACHMENT1_EXT };
GLuint fbo, color, depth, depth_rb, latestTextureUpdated,

destinationAttachment;
CGcontext g_cgContext;
CGprofile g_cgProfile;

// Filenames for usage
char inputFile1[maxString];

 // Input file which will be used
char outputFilename[maxString]="Data\\GPUoutputFile.txt"; // Ouput file to

be used
char resultsFilename[maxString]="Data\\GPUresultsFile.txt"; // Performance

file to be used

// Data array for saving the texture to
static GLubyte data[maxArraySize][maxArraySize][4];
static GLubyte outData[maxArraySize][maxArraySize][4];
static GLubyte checkImage[maxArraySize][maxArraySize][4];

// Placeholders for textures used as a data arrays
unsigned int _iTexture, _jTexture, _jNewTexture, actualTexture,

outDataTexture;

 76

GPUbitonicSort.cpp, continued.

// Cg related variables
CGprogram _fragmentProgram; // the fragment program used to update
CGparameter _textureParam; // a parameter to the fragment program
CGparameter outDataTextureParam; // a parameter to the fragment

program

/**
 * initialise
 *
 * Sets up the OpenGL and Cg environment in preparation for GLUT.
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void initialise(void)
{
 // Setup Cg
 cgSetErrorCallback(cgErrorCallback); // Enable reporting of Cg

errors
 g_cgContext = cgCreateContext(); // Initialise a Cg context

 // Get the best profile for this hardware
 g_cgProfile = cgGLGetLatestProfile(CG_GL_FRAGMENT);
 assert(g_cgProfile != CG_PROFILE_UNKNOWN);
 cgGLSetOptimalOptions(g_cgProfile);

 // FYI check to see this machine's largest texture size possible
 int maxtexsize;
 glGetIntegerv(GL_MAX_TEXTURE_SIZE,&maxtexsize);
 if(debug)
 {
 printf("GL_MAX_TEXTURE_SIZE, %d\n",maxtexsize);
 printf("CG_profile, %d\n",g_cgProfile);
 }

 // Setup inital variable values related to the Bitonic sorting sequence
 myTemp[0]=0;
 myLoop=1;
 myPass=2; // 1 greater than expected because of pre decrementing later

 // Setup the parameters to be passed to the Cg program
 myTemp2[0]=pow(2,(myPass-1));
 myTemp2[1]=checkImageWidth;
 myTemp2[2]=floor(pow(2,myLoop));
 myTemp2[3]=floor(pow(2,myPass));

 // FYI the bitonic sequence information
 if(debug)
 {
 printf(" Stage: %d Step: %d\n",myLoop,myPass);
 printf(" Setting Offset: %f\n",myTemp2[0]);
 printf(" Setting pbufwidth: %f\n",myTemp2[1]);
 printf(" Setting stageno: %f\n",myTemp2[2]);
 printf(" Setting stepno: %f\n",myTemp2[3]);
 printf("After initialise: counter: %.0f Pass: %d 2Stage

%d\n",counter,myPass,myLoop);
 }

 // A float4 variable holding data to send to the Cg shader
 myTemp[0] = 1;
 myTemp[1] = checkImageWidth;
 myTemp[2] = checkImageHeight;

 77

GPUbitonicSort.cpp, continued.

 myTemp[3] = checkImageHeight*checkImageWidth;

 // FYI check to find the largest possible renderBuffer for this machine
 GLint max_size = 0;
 glGetIntegerv(GL_MAX_RENDERBUFFER_SIZE_EXT, &max_size);
 if (debug) printf("glRenderBuffer:: max size %d\n",max_size);

 // Generate a blank texture to be used as the destination of results
 glGenTextures(1, &_iTexture);
 glBindTexture(GL_TEXTURE_2D, _iTexture);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 // Set it up with null contents
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, checkImageWidth,

checkImageHeight,
 0, GL_RGBA, GL_FLOAT, NULL);

 // Generate a texture and bind it to the array checkImage
 glGenTextures(1, &_jTexture);
 glGenTextures(1, &_jNewTexture);
 glBindTexture(GL_TEXTURE_2D, _jTexture);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, checkImageWidth,

checkImageHeight,
 0, GL_RGBA, GL_UNSIGNED_BYTE, checkImage);

 // Setup the viewport for OpenGL to be same size as input
 int viewport[4];
 glGetIntegerv(GL_VIEWPORT, viewport);
 glViewport(0, 0, checkImageWidth, checkImageHeight);

 // EXT_framebuffer_object required definitions
 // as per myxo.css.msu.edu:443/d2x-xl/trunk/arch/ogl/fbuffer.c
 char *ext = (char*)glGetString(GL_EXTENSIONS);
 if(strstr(ext, "EXT_framebuffer_object") == NULL)
 {
 printf("EXT_framebuffer_object extension was not found");
 }
 else
 {
 glIsRenderbufferEXT =

(PFNGLISRENDERBUFFEREXTPROC)wglGetProcAddress("glIsRenderbufferEXT");
 glBindRenderbufferEXT =

(PFNGLBINDRENDERBUFFEREXTPROC)wglGetProcAddress("glBindRenderbufferEXT"
);

 glDeleteRenderbuffersEXT =
(PFNGLDELETERENDERBUFFERSEXTPROC)wglGetProcAddress("glDeleteRenderbuffe
rsEXT");

 glGenRenderbuffersEXT =
(PFNGLGENRENDERBUFFERSEXTPROC)wglGetProcAddress("glGenRenderbuffersEXT"
);

 glRenderbufferStorageEXT =
(PFNGLRENDERBUFFERSTORAGEEXTPROC)wglGetProcAddress("glRenderbufferStora
geEXT");

 glGetRenderbufferParameterivEXT =
(PFNGLGETRENDERBUFFERPARAMETERIVEXTPROC)wglGetProcAddress("glGetRenderb
ufferParameterivEXT");

 glIsFramebufferEXT =
(PFNGLISFRAMEBUFFEREXTPROC)wglGetProcAddress("glIsFramebufferEXT");

 78

GPUbitonicSort.cpp, continued.

 glBindFramebufferEXT =
(PFNGLBINDFRAMEBUFFEREXTPROC)wglGetProcAddress("glBindFramebufferEXT");

 glDeleteFramebuffersEXT =
(PFNGLDELETEFRAMEBUFFERSEXTPROC)wglGetProcAddress("glDeleteFramebuffers
EXT");

 glGenFramebuffersEXT =
(PFNGLGENFRAMEBUFFERSEXTPROC)wglGetProcAddress("glGenFramebuffersEXT");

 glCheckFramebufferStatusEXT =
(PFNGLCHECKFRAMEBUFFERSTATUSEXTPROC)wglGetProcAddress("glCheckFramebuff
erStatusEXT");

 glFramebufferTexture1DEXT =
(PFNGLFRAMEBUFFERTEXTURE1DEXTPROC)wglGetProcAddress("glFramebufferTextu
re1DEXT");

 glFramebufferTexture2DEXT =
(PFNGLFRAMEBUFFERTEXTURE2DEXTPROC)wglGetProcAddress("glFramebufferTextu
re2DEXT");

 glFramebufferTexture3DEXT =
(PFNGLFRAMEBUFFERTEXTURE3DEXTPROC)wglGetProcAddress("glFramebufferTextu
re3DEXT");

 glFramebufferRenderbufferEXT =
(PFNGLFRAMEBUFFERRENDERBUFFEREXTPROC)wglGetProcAddress("glFramebufferRe
nderbufferEXT");

 glGetFramebufferAttachmentParameterivEXT =
(PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVEXTPROC)wglGetProcAddress("glG
etFramebufferAttachmentParameterivEXT");

 glGenerateMipmapEXT =
(PFNGLGENERATEMIPMAPEXTPROC)wglGetProcAddress("glGenerateMipmapEXT");

 if(!glIsRenderbufferEXT || !glBindRenderbufferEXT ||

!glDeleteRenderbuffersEXT ||
 !glGenRenderbuffersEXT || !glRenderbufferStorageEXT ||

!glGetRenderbufferParameterivEXT ||
 !glIsFramebufferEXT || !glBindFramebufferEXT ||

!glDeleteFramebuffersEXT ||
 !glGenFramebuffersEXT || !glCheckFramebufferStatusEXT ||

!glFramebufferTexture1DEXT ||
 !glFramebufferTexture2DEXT || !glFramebufferTexture3DEXT ||

!glFramebufferRenderbufferEXT||
 !glGetFramebufferAttachmentParameterivEXT ||

!glGenerateMipmapEXT)
 {
 printf("One or more EXT_framebuffer_object functions were not

found");
 }
 }
 // Create an FBO, Frame Buffer object
 glGenFramebuffersEXT(1, &fbo);
 // Create a color texture, null contents yet
 glGenTextures(1, &color);
 glBindTexture(GL_TEXTURE_2D, color);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, checkImageWidth,
 checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,

NULL);
 // FYI check of the framebuffer so far
 if(debug) printf("Check 1 : \n");checkFramebufferStatus();
 // Create depth renderbuffer
 glGenRenderbuffersEXT(1, &depth);
 // Bind the FBO and attach the color textures to it
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,

GL_TEXTURE_2D,
 _jTexture, 0);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT1_EXT,

GL_TEXTURE_2D,
 _iTexture, 0);
 // RenderBuffer generation

 79

GPUbitonicSort.cpp, continued.

 glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, depth_rb);
 glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT24,

checkImageWidth, checkImageHeight);
 // Attach renderbufferto framebuffer depth buffer
 glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT,

GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, depth_rb);
 // Set the destination draw buffer to attachment 1 initially
 glDrawBuffer(GL_COLOR_ATTACHMENT1_EXT);
 // FYI check of the framebuffer so far
 if(debug) printf("Check 1b : \n");checkFramebufferStatus();

 // Create the fragment shader
 _fragmentProgram = cgCreateProgramFromFile(g_cgContext, CG_SOURCE,
 "fragmentShader.cg", g_cgProfile,
 "edges", NULL);

 // Create the texture parameter for the fragment program
 // Since this is the inital setup, just load the Cg program - do not

enable it until ready
 if(_fragmentProgram != NULL)
 {
 cgGLLoadProgram(_fragmentProgram);
 cgGLBindProgram(_fragmentProgram);
 // cgGLEnableProfile(g_cgProfile); // don't enable until ready to

process
 _textureParam = cgGetNamedParameter(_fragmentProgram, "texture");
 outDataTextureParam = cgGetNamedParameter(_fragmentProgram,

"outDataTexture");
 }

 // Initially load the input data into the texture
 // by drawing a single quad with the texture as the destination
 glBindTexture(GL_TEXTURE_2D, _jTexture);
 cgGLSetTextureParameter(_textureParam, _jTexture);
 cgGLEnableTextureParameter(_textureParam);
 glEnable(GL_TEXTURE_2D);
 // use OpenGL to draw the quad
 glBegin(GL_QUADS);
 {
 glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
 glTexCoord2f(1, 0); glVertex3f(1, -1, -0.5f);
 glTexCoord2f(1, 1); glVertex3f(1, 1, -0.5f);
 glTexCoord2f(0, 1); glVertex3f(-1, 1, -0.5f);
 }
 glEnd();
 cgGLDisableTextureParameter(_textureParam);

 // setting this so the toggle at the beginning of updatePart2 will

maintain the current value
 toggleTex=0;

} // End of initialise(void)
//--

 80

GPUbitonicSort.cpp, continued.

/**
 * updatePart2
 *
 * Sets the input to the Cg shader and enacts a drawing to the screen
 * so that a single sorting pass is completed by the Cg shader.
 * This function is called repeatedly by GLUT.
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void updatePart2()
{
 counter++;
 myTemp[0]=counter;
 // Running variables for the Cg program
 myPass=myPass-1;
 if (myPass == 0)
 {
 myLoop = myLoop+1;
 myPass = myLoop;
 }

 // Check to see if the sorting operation has completed
 if (pow(2,myLoop) > checkImageWidth*checkImageHeight)
 {
 testsToRun--;
 testsRan++;
 // Inform user of completion status
 printf("Finished loop %d of %d.\n",testsRan,testsRan+testsToRun);
 // Finished sorting all the input data, so flush operations on the

GPU
 glFinish();

 // This is where the program will exit, it has completed sorting
 if(testsToRun==0)
 {
 // Track the timing required
 endTime = clock();
 timeForUpdate = clock()-gpuStart;
 if(debug) printf("Finished at %f\n",(clock()-

startTime)/CLOCKS_PER_SEC);
 // Save the results to file
 saveFile();
 // Exit the program, return to the OS
 exit(0);
 }
 else
 {
 // Sorting has not completed, update the bitonic pass

variables
 counter=0;
 myLoop=1;
 myPass=1;
 // FYI tracking
 if(debug) printf("done at %f\n", (clock()-

startTime)/CLOCKS_PER_SEC);
 }
 }

 // By toggling the textures, only 2 are required in total,
 // 1 to read from and 1 to write to
 // actualTexture is the one to read from,

 81

GPUbitonicSort.cpp, continued.

 // framebuffertexture/glDrawBuffer is the one to write to
 if (toggleTex==0)
 {
 toggleTex=1;readTex=0;
 actualTexture=_iTexture;
 latestTextureUpdated=_jTexture;
 glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
 destinationAttachment=GL_COLOR_ATTACHMENT0_EXT;
 }
 else
 {
 toggleTex=0;
 readTex=1;
 actualTexture= _jTexture;
 latestTextureUpdated=_iTexture;
 glDrawBuffer(GL_COLOR_ATTACHMENT1_EXT);
 destinationAttachment=GL_COLOR_ATTACHMENT1_EXT;
 }
 // set the destination for drawing to
 glDrawBuffer(destinationAttachment);

 // set the uniform parameter for passing to the Cg Shader
 myTemp2[0]=pow(2,(myPass-1));
 myTemp2[1]=checkImageWidth;
 myTemp2[2]=floor(pow(2,myLoop));
 myTemp2[3]=floor(pow(2,myPass));

 // FYI of progress
 if(debug)
 {
 printf(" Bitonic Step: %d Stage: %d\n",myLoop,myPass);
 printf(" Setting Offset: %f\n",myTemp2[0]);
 printf(" Setting pbufwidth: %f\n",myTemp2[1]);
 printf(" Setting stepno: %f\n",myTemp2[2]);
 printf(" Setting stageno: %f\n",myTemp2[3]);
 }

 // edit the uniform parameter for the fragment program
 // set the first item to toggle
 CGparameter myCParameter = cgGetNamedParameter(_fragmentProgram,

"myCgParameter");
 cgGLSetParameter4fv(myCParameter, myTemp);
 CGparameter myCDistance = cgGetNamedParameter(_fragmentProgram,

"myDistance");
 cgGLSetParameter4fv(myCDistance, myTemp2);

 // bind the Cg program in preparation
 cgGLBindProgram(_fragmentProgram);

 // bind the alternating texture as input (the other will be output
 glBindTexture(GL_TEXTURE_2D, actualTexture);
 cgGLSetTextureParameter(_textureParam, actualTexture);
 cgGLEnableTextureParameter(_textureParam);

 // Set the OpoenGL drawing mode
 glEnable(GL_TEXTURE_2D);
 glPolygonMode(GL_FRONT,GL_FILL);

 // Actually enable the Cg Shader
 cgGLEnableProfile(g_cgProfile);
 // Draw the window sized quad
 glBegin(GL_QUADS);
 {
 glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
 glTexCoord2f(1, 0); glVertex3f(1, -1, -0.5f);
 glTexCoord2f(1, 1); glVertex3f(1, 1, -0.5f);

 82

 GPUbitonicSort.cpp, continued.

 glTexCoord2f(0, 1); glVertex3f(-1, 1, -0.5f);
 }
 glEnd();

 // Disable the Cg shader
 cgGLDisableProfile(g_cgProfile);

 // Disable the texture
 cgGLDisableTextureParameter(_textureParam);
 glDisable(GL_TEXTURE_2D);

 // Present the visualisation of the data
 // if the debug setting is set to 1
 if (debug) display();

} // end of updatePart2(void)
//--

/**
 * display
 *
 * Draws onscreen the data which is being currently rearranged by
 * the Bitonic sorting activities.
 * Only called if debug setting is set to 1 as it requires relatively
 * substantial time overhead
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void display()
{
 // Set the destination to the screen window
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
 // Bind the latest texture which was updated
 glBindTexture(GL_TEXTURE_2D, latestTextureUpdated);
 glEnable(GL_TEXTURE_2D);
 // FYI information
 if(debug) printf("in display, frame %.0f\n", counter);

 // Render a window sized quad
 glBegin(GL_QUADS);
 {
 glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
 glTexCoord2f(1, 0); glVertex3f(1, -1, -0.5f);
 glTexCoord2f(1, 1); glVertex3f(1, 1, -0.5f);
 glTexCoord2f(0, 1); glVertex3f(-1, 1, -0.5f);
 }
 glEnd();
 glutSwapBuffers(); // Is a time-expensive operation
 // but it is required to view the effects

 // Restore the previous off-screen operations
 glDisable(GL_TEXTURE_2D);
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);

} // end of display(void)
//--

 83

GPUbitonicSort.cpp, continued.

/**
 * saveFile
 *
 * Write the sorted array of data to file.
 * Also write to the results file, the performance metrics
 * such as the time required to sort the data.
 *
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void saveFile(void)
{
 // Variables and file handle required
 int p,q,i,j=0;
 FILE *j_file;

 // Ensure all activities pending on the GPU are completed
 glFinish();

 // Record the timing for saving this file
 double fileStart = clock();

 // Copy the texture to a data array
 // Note: It will arrive in a 90 degree rotation
 glReadBuffer(destinationAttachment);
 glReadPixels(0, 0, checkImageWidth,

checkImageHeight,GL_RGBA,GL_UNSIGNED_BYTE,data);
 glFinish();

 // Note the timing for transferring the data from GPU to CPU
 double fileTransfer = clock();

 // File saving: open the file of sorted data
 if((j_file = fopen(outputFilename, "w"))==NULL) return ;
 // Save the data
 for (i=0; i < checkImageWidth*checkImageHeight; i++)
 {
 q=floor(i/checkImageHeight);
 p=i%(int)checkImageWidth;
 // Note: writing only only the Blue component as this is the colour

plane in use
 fprintf(j_file,"%d\n",data[p][q][2]);
 }
 fclose(j_file); // Close the file stream

 // note the timings
 float fileEnd = clock();
 float total = (endTime-startTime);
 // Ouput to user
 printf("Sorting time: %.4f seconds per

iteration\n",timeForUpdate/CLOCKS_PER_SEC/testsRan);

 // Capture the performance metrics
 //
 // Write to the results file, in appending fashion
 if((j_file = fopen(resultsFilename, "a+"))==NULL) return ;
 fprintf(j_file,"\n\nGPU Sort --------------------------------------

\n");
 fprintf(j_file,"Pixel data transfer time %.4f \nFile access time

%.4f\n",
 (fileTransfer-fileStart)/CLOCKS_PER_SEC, (fileEnd-

fileTransfer)/CLOCKS_PER_SEC);

 84

GPUbitonicSort.cpp, continued.

 fprintf(j_file,"Counter: %.0f frames with %d loops in total time %.3f
seconds (fps:%.1f)\n",

 counter,testsRan, total/CLOCKS_PER_SEC,
 (float)counter*(float)testsRan/((float)total/(float)CLOCKS_PER_SEC)

);
 float sortingTime = timeForUpdate/CLOCKS_PER_SEC/testsRan;
 fprintf(j_file,"Sorting time: %.4f seconds per

iteration\n",sortingTime);
 fprintf(j_file,"%.0f image size with %.0f

items\n",checkImageWidth,checkImageWidth*checkImageHeight);
 fprintf(j_file,"Items per

second:%.0f\n",checkImageWidth*checkImageHeight/sortingTime);
 fprintf(j_file,"Debug value:%d\n",debug);
 fclose(j_file); // Close the file stream

} // end of saveFile(void)
//--

/**
 * idle
 *
 * Glut will call this function each time it believes the GPU is ready
 * to receive more instructions.
 * This function will allow the CPU to rest, and/or run another
 * iteration of the Bitonic sort by calling updatePart2
 *
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void idle(void)
{

 // FYI information
 if(debug) printf("starting idle. counter=%d\n",counter);
 // Allow the CPU to rest, if the timer is set to a positive value
 Sleep(SleepTime);
 // Run the next iteration of Bitonic sort routine
 updatePart2();

} // end of idle(void)
//--

/**
 * reshape
 *
 * Glut will call this function each time it notices a resize of the
 * drawing window.
 *
 *
 * @param w Width of the window, in pixels
 * @param h Height of the window, in pixels
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void reshape(int w, int h)
{

 85

GPUbitonicSort.cpp, continued.

 // Avoid division by zero
 if (h == 0) h = 1;

 // Set the viewport to the new size
 glViewport(0, 0, w, h);
 // Restore the unit sized window and mode for drawing
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(-1, 1, -1, 1);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

} // end of reshape(int w, int h)
//--

/**
 * cgErrorCallback
 *
 * Standard Cg function to facilitate the reporting of errors
 * experienced in the Cg environment to the user.
 * Only called when Cg experiences an error.
 *
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void cgErrorCallback(void)
{
 // Capture the error
 CGerror lastError = cgGetError();
 // If there is an actual error
 if(lastError)
 {
 // Report the string to the user
 printf("%s\n\n", cgGetErrorString(lastError));
 printf("%s\n", cgGetLastListing(g_cgContext));
 printf("Cg error!\n");
 }

} // end of cgErrorCallback(void)
//--

/**
 * main
 *
 * Standard C main function - Entry point for program
 *
 *
 * @param argc Number of arguments passed
 * @param argv Items of arguments passed
 * @return int 0 if successful, non-zero if not.
 *
 * @author Jason Ruane
 * @version 1.0
 */
int main(int argc, char **argv)
{

 // Inform user program is starting

 86

GPUbitonicSort.cpp, continued.

 printf("Starting GPU sorting.\n");

 // If sufficient arguments have been passed
 if(argc>3)
 {
 // Assign the image array size
 checkImageWidth=atoi(argv[2]);
 checkImageHeight=checkImageWidth;

 // Assign the number of tests to run
 testsToRun=atoi(argv[3]);

 // Set the debug flag on if required
 if(argc>4)
 {
 if(atoi(argv[4])==1)
 {
 printf("Debug On\n");
 debug=1;
 }
 }

 // Assign the filename for input data
 strcpy(inputFile1,argv[1]);
 }
 else
 {
 // Inform user incorrect values supplied
 printf("Please specify an input file and a value for debug\n");
 // Return to the OS
 exit(0);
 }

 // FYI information
 if(debug) printf("loading input file\n");
 loadFile();
 glFinish();
 // Set timing variable
 startTime = clock();

 // Set up GLUT system
 // RGBA display mode required
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);
 // Window size in pixels
 glutInitWindowSize(checkImageWidth, checkImageWidth);
 // Initial position of window
 glutInitWindowPosition(100, 100);
 // Create the display window
 glutCreateWindow("GPUcompute");
 // Set the funtion to call when the GPU is ready
 glutIdleFunc(idle);
 // How to update the GLUT window
 glutDisplayFunc(display);
 // If the GLUT window is resized, what to run
 glutReshapeFunc(reshape);

 // Set up system and load texture
 initialise();
 // Ensure GPU actions are finished
 glFinish();
 // Inform user
 printf("Starting at %f\n",(clock()-startTime)/CLOCKS_PER_SEC);
 // Timing variable
 gpuStart = clock();

 87

GPUbitonicSort.cpp, continued.

 // Enter the GLUT system.
 // GLUT does not return, so the exiting of the entire program
 // will be enacted from within the updatePart2 function, wherein
 // exit(0) can be found
 glutMainLoop();

 return(0); // Never actually reached, but left for completeness

} // end of main(int argc, char **argv)
//--

/**
 * loadFile
 *
 * Load the input data (unsorted integers)
 * and store it into the checkImage array
 *
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void loadFile(void)
{
 // Local variables and file handle required
 int p, q, field1, i=0;
 FILE *j_file;

 // Open the file for reading
 if((j_file = fopen(inputFile1, "r"))==NULL) return ;
 // Read the data
 // format is 1 integer [0-255] per line
 while(fscanf(j_file , "%i\n" , &field1) != EOF)
 {
 // the 1 Dimension variable i, converted the 2-D
 q=floor(i/checkImageHeight);
 p=i%(int)checkImageWidth;
 checkImage[p][q][2] = 0;
 checkImage[p][q][1] = 0;
 checkImage[p][q][0] = field1;
 checkImage[p][q][3] = 255;
 i++;
 // if the data file is too large, ignore extra items
 if(i>=checkImageWidth*checkImageHeight) { break; }
 }
 fclose(j_file); // Close the file stream
} // end of loadFile(void)
//--

/**
 * checkFramebufferStatus
 *
 * Standard OpenGL function to check the status of the framebuffer
 *
 *
 * @param void
 * @return bool 0=Success, 1=Fail
 *
 * @author Jason Ruane, as per official OpenGL definitions

 88

GPUbitonicSort.cpp, continued.

 * @see http://oss.sgi.com/projects/ogl-
sample/registry/EXT/framebuffer_object.txt

 * @version 1.0
 */
bool checkFramebufferStatus(void)
{
 GLenum status;
 status=(GLenum)glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
 switch(status) {
 case GL_FRAMEBUFFER_COMPLETE_EXT:
 return true;
 case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT:
 printf("Framebuffer incomplete,incomplete attachment\n");
 return false;
 case GL_FRAMEBUFFER_UNSUPPORTED_EXT:
 printf("Unsupported framebuffer format\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT_EXT:
 printf("Framebuffer incomplete,missing attachment\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT:
 printf("Framebuffer incomplete,attached images must have same

dimensions\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT:
 printf("Framebuffer incomplete,attached images must have same

format\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT:
 printf("Framebuffer incomplete,missing draw buffer\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT:
 printf("Framebuffer incomplete,missing read buffer\n");
 return false;
 }
 return false;
}// end of checkFramebufferStatus(void)
//--

 89

 7.3.2 Appendix 3.2 GPU Sorting: fragmentShader.cg

 The following code is from fragmentShader.cg. It is the Cg code to

accompany the bitonic sorting program for the GPU.

// Bitonic sorting fragment shader
//
half4 edges(float2 coords : TEX0, //: TEX0 for clamped version of

coordinates, WPOS for integer
 uniform sampler2D texture,
 uniform half4 myDistance,
 uniform float4 myCgParameter) : COLOR
{

// Retrieve the variables from the uniform parameters
float offset = myDistance[0];
float imageWidth= myDistance[1];
float stepno = myDistance[2];
float stageno = myDistance[3];

// Calculate the 2D and 1D equivalent locations
// for the current location
// The floor is required to start at zero and reach 255
int current2dx = floor(coords.y*imageWidth);
int current2dy = floor(coords.x*imageWidth);
int current1d = floor((current2dy * imageWidth) + current2dx);

// would like to do:
// half csign = ((current1d % int(stageno)) < offset) ? 1 : -1;
// But performance is 2X for the following method:
float temp = frac(current1d /stageno);
float temp2 = temp*stageno;
half csign = (temp2 < offset) ? 1 : -1;

// half cdir = (int(current1d/stepno) % 2 == 0) ? 1 : -1;
// But performance is 2X for the following method:
temp = floor(current1d/stepno);
temp2 = frac(temp/2);
half cdir = (temp2 == 0) ? 1 : -1;

// Calculate the 2D and 1D equivalent locations
// for the other, matching location
float other1d = current1d + (csign * offset);
float other2dreal = other1d/imageWidth;
float other2dx = (frac(other2dreal) * imageWidth);
float other2dy = float(floor(other2dreal));

// Find the value in the textures for the 2D locations found above
half4

val0=tex2D(texture,half2((current2dy/imageWidth),(current2dx/imageWidth
)));

half4 val1=tex2D(texture,half2((other2dy/imageWidth),(other2dx/imageWidth))
);

// Find the current minimum and maximum
float jmin = min(val0.z , val1.z);
float jmax = max(val0.z , val1.z);

// Return either the minumum or maximum depending on the sign and direction
return(csign == cdir) ? half4(0,0,jmin,1) : half4(0,0,jmax,1);

}

 90

 7.3.3 Appendix 3.3 GPU Sorting: vertexShader.cg

 The following code is from vertexShader.cg. It is used by

GPUbitonicSort.exe and is designed to pass the vertex values onto the rest of the

GPU pipeline without interference.

// Standard Vertex shader
// required to just pass values through
//
struct vert_Output {
 float4 position : POSITION;
 float4 color : COLOR;
};

vert_Output vertexMain(float4 position : POSITION ,
 float4 color : COLOR,
 uniform float4 Kd)
{
 vert_Output OUT;

 OUT.position = position;
 OUT.color = Kd;

 return OUT;
}

 91

 7.3.4 Appendix 3.4 CPU Sorting: CPUbitonicSort.cpp

 The following code is from CPUbitonicSort.cpp. It compiles to become

CPUbitonicSort.exe, the CPU implementation for sorting task.

/**
 * Bitonic Sorting on the CPU.
 *
 * This program enacts the Bitonic sorting alorithm on a CPU using a
 * similar setup to the GPU based implementation.
 * This program also uses the standard C Qsort and C++ std::sort
 * for comparison of performance.
 *
 * @param inputFile The location of the input file of data
 * @return A successful exit(0) signal.
 *
 * @author Jason Ruane, DIT Bolton St. Dublin, Ireland. B773.2006.
 * @version 1.0
 */

// Preprocessor directives
#define checkImageWidth 256
#define checkImageHeight 256
#define debug 0
#define SleepTime 0

// Include files required
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <windows.h>
#include <winbase.h>
#include <assert.h>
#include <math.h>
#include <algorithm>

// For the C++ standard sorting routine
using std::sort;

// Function declarations
void loadFile(void);
void saveFile(void);
void initialise(void);
void idle(void);
void updatePart2(void);
void display(void);
int compare (const void * a, const void * b);

// global variables employed throughout
int testsToRun=1;

float myTemp2[4];
float myTemp[4];
int myPass, myLoop=1;
float counter=0; // count the frames rendered
double start,end; // used for timing the frames
double timeForUpdate=0;

int testsRan=0, maxCounterRuns = 1000;
int toggleTex=0,otherTex=1;
int oneDarray[checkImageWidth*checkImageHeight];
double timeQsort,timeQsortStart, tempStart;

// data array for saving the texture to
int checkImage[2][checkImageHeight][checkImageWidth][4];

 92

CPUbitonicSort.cpp, continued.

int data[checkImageWidth][checkImageHeight][4];
int outData[checkImageWidth][checkImageHeight][4];

// Filename for usage
char inputFile1[255]; // Input file which will be

used

/**
 * compare
 *
 * Used by the standard C sorting routine to compare items.
 *
 * @param a First item to compare
 * @param a Second item to compare
 * @return int Number to indicate which of the inputs is larger
 * Non-negative if a>=b or negative otherwise
 *
 * @author Jason Ruane
 * @version 1.0
 */
int compare (const void * a, const void * b)
{
 return (*(int*)a - *(int*)b);
} // End of compare
//--

/**
 * updatePart2
 *
 * Enact a single pass of the bitonic sort
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void updatePart2(void)
{
 // Increment the counter of passes
 counter++;
 myTemp[0]=counter;

 // Running variables RE: pass and loop/stage
 myPass=myPass-1;
 if (myPass == 0)
 {
 myLoop = myLoop+1;
 myPass = myLoop;
 }

 // Check to see if the sorting operation has completed
 if (pow(2,myLoop) > checkImageWidth*checkImageHeight)
 {
 testsToRun--;
 if(testsToRun==0)
 {
 // Note the time taken
 end = clock();
 double total = (end-start);
 // Inform user
 printf("finishing: Counter: %.0f by %d in Time %.3f ,

fps:%.1f\n",

 93

CPUbitonicSort.cpp, continued.

 counter,testsToRun,total/CLOCKS_PER_SEC,counter/(total/CLOCKS_PER_SEC
));

 timeForUpdate += clock()-tempStart;
 // Save the output (sorted data) to file
 saveFile();
 // Terminate the program
 exit(0);
 }
 else
 {
 // Progress to the next phase, setting variables
 counter=0;
 myLoop=1;
 myPass=1;
 }
 } // End of check if sorting operation has completed

 // Note the pass/stage/loop information
 myTemp2[0]=pow(2,(myPass-1));
 myTemp2[1]=float(checkImageWidth);//pow(2,myLoop);
 myTemp2[2]=floor(pow(2,myLoop));
 myTemp2[3]=floor(pow(2,myPass));

 // FYI the phase information
 if(debug)
 {
 printf(" Bitonic Step: %d Stage: %d\n",myLoop,myPass);
 printf(" Setting Offset: %f\n",myTemp2[0]);
 printf(" Setting pbufwidth: %f\n",myTemp2[1]);
 printf(" Setting stepno: %f\n",myTemp2[2]);
 printf(" Setting stageno: %f\n",myTemp2[3]);
 }

 /* CPU Sorting in a GPU simulation fashion */
 for(int pixelY=0;pixelY<checkImageHeight;pixelY++)
 {
 for(int pixelX=0;pixelX<checkImageWidth;pixelX++)
 {
 // This section is similar to the fragment shader code
 float imageWidth = myTemp2[1];
 float offset = myTemp2[0];
 float pbufwidth = myTemp2[1]-1.0;
 float stepno = myTemp2[2];
 float stageno = myTemp2[3];

 // Find the 2D and 1 D location for the current element
 // The floor is required to make it start at zero and reach

255
 int current2dx = floor(pixelX);
 int current2dy = floor(pixelY);
 int current1d = current2dy * imageWidth + current2dx;

 // Find the current sign and direction
 float csign = ((current1d % int(stageno)) < offset) ? 1 : -1;
 float cdir = (int(current1d/stepno) % 2 == 0) ? 1 : -1;

 // Find the 2D and 1D location for the corresponding compare

element
 int other1d = current1d + (csign * offset);
 float other2dreal = float(other1d)/float(imageWidth);
 int other2dx = ((other2dreal-int(other2dreal)) * imageWidth);
 int other2dy = float(floor(other2dreal));

 94

CPUbitonicSort.cpp, continued.

 // Find the values of the elements
 int val1=checkImage[toggleTex][other2dx][other2dy][2];
 int val0=checkImage[toggleTex][current2dx][current2dy][2];

 // Find the min and max of each element
 int cmin = min(val0,val1);
 int cmax = max(val0,val1);
 //float cmax = (val0 > val1) ? val0 : val1;

 // Return either min or max depending on sign and direction
 int returnValue = (csign == cdir) ? cmin : cmax;
 checkImage[otherTex][pixelX][pixelY][2] = returnValue;

 } // End of pixelX loop
 } // End of PixelY loop

 // Set the toggling values (similar to textures), for next run
 if(toggleTex==0)
 { toggleTex=1;otherTex=0;}
 else
 { toggleTex=0;otherTex=1;}

} // end of updatePart2
//--

/**
 * display
 *
 * Inform the user of the current "frame" in use
 * Essentially reports the bitonic sort phase
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void display()
{
 if(debug) printf("in display, frame %.0f\n", counter);
} // end of display
//--

/**
 * saveFile
 *
 * Write the cpu bitonic sorted array of data to file.
 * Also save the Qsorted array to file
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void saveFile(void)
{
 int p,q,i, j=0;
 FILE *j_file;
 double fileStart = clock();

 95

CPUbitonicSort.cpp, continued.

 // Copy the data array to another array (CPU to CPU data copies)
 for (i=0; i < checkImageWidth*checkImageHeight; i++)
 {
 p=i%checkImageWidth; // col
 q=i/checkImageWidth; // row
 data[p][q][0]=0;
 data[p][q][1]=0;
 data[p][q][2]=checkImage[toggleTex][p][q][2];
 data[p][q][3]=0;
 }

 // Note the timing
 double fileTransfer = clock();

 // Open the file for writing
 if((j_file = fopen("Data\\output-bitonic.txt", "w"))==NULL) return ;

 // print the data to file
 for (i=0; i < checkImageWidth*checkImageHeight; i++)
 {
 q=floor(i/checkImageHeight);
 p=i%checkImageWidth;
 fprintf(j_file,"%d\n",data[p][q][2]);
 }
 fclose(j_file); // Close the file stream

 // Note the timing
 double fileEnd = clock();

 // the QSORT() version
 if((j_file = fopen("Data\\output-qsort.txt", "w"))==NULL) return ;
 for (i=0; i < checkImageWidth*checkImageHeight; i++)
 {
 // oneDarray contains the Qsorted version
 fprintf(j_file,"%d\n",oneDarray[i]);
 }
 fclose(j_file); // Close the file stream

} // end of saveFile
//--

/**
 * idle
 *
 * Run the next phase of the bitonic sort
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void idle(void)
{
 // Allow the CPU to rest, if set in SleepTime
 Sleep(SleepTime);

 // Run the next phase
 updatePart2();

} // end of idle
//--

 96

CPUbitonicSort.cpp, continued.

/**
 * initialise
 *
 * Set up variables required for the phase definition of bitonic sort
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void initialise()
{

 // Initial phase information
 myTemp[0]=0;
 myLoop=1;
 myPass=2; // 1 greater than expected 1 because of pre decrementing
 toggleTex=0;

 // Store in vector
 myTemp2[0]=pow(2,(myPass-1));
 myTemp2[1]=checkImageWidth;//pow(2,myLoop);
 myTemp2[2]=floor(pow(2,myLoop));
 myTemp2[3]=floor(pow(2,myPass));

 // FYI information
 if(debug)
 {
 printf(" Stage: %d Step: %d\n",myLoop,myPass);
 printf(" Setting Offset: %f\n",myTemp2[0]);
 printf(" Setting pbufwidth: %f\n",myTemp2[1]);
 printf(" Setting stageno: %f\n",myTemp2[2]);
 printf(" Setting stepno: %f\n",myTemp2[3]);
 printf("After initialise: counter: %.0f Pass: %d 2Stage

%d\n",counter,myPass,myLoop);
 }

} // end of initialise
//--

/**
 * main
 *
 * Standard C main function - Entry point for program
 *
 *
 * @param argc Number of Command line arguments
 * @param argv Command line arguments
 * @return int 0 if successful, non-zero if not.
 *
 * @author Jason Ruane
 * @version 1.0
 */
int main(int argc, char **argv)
{

 // If sufficient arguments have been passed
 if(argc>1)
 {
 // Assign the filename for input data
 strcpy(inputFile1,argv[1]);
 }

 97

CPUbitonicSort.cpp, continued.

// std::sort method
 // Load the input file
 loadFile();
 // Note the timing
 double timeSTDsortStart=clock();
 // Enact the sorting
 sort(oneDarray,oneDarray+(checkImageWidth*checkImageHeight));
 // Note the finish time
 double timeSTDsort=(clock()-timeSTDsortStart)/CLOCKS_PER_SEC;
 // Output timing result to user
 printf("STDsorted in %f seconds\n",timeSTDsort);

// Qsort method
 // Load the input file
 loadFile();
 // Note the timing
 timeQsortStart=clock();
 // Enact the sorting
 qsort (oneDarray, float(checkImageWidth)*float(checkImageHeight),

sizeof(int), compare);
 // Note the finish time
 timeQsort=(clock()-timeQsortStart)/CLOCKS_PER_SEC;
 // Output timing result to user
 printf("Qsorted in %f seconds\n",timeQsort);

// CPU bitonic sort in GPU fashion
 // Set up initial bitonic phase variables
 initialise();
 // Note the timing
 start = clock();
 tempStart = clock();
 // Enter the bitonic sorting loop
 // This will not exit, the program termination occurs inside

updatepart2()
 // when it deems the sorting is complete
 do{
 idle(); // repeatedly run another phase
 }while(1);

return(0); // Never actually reached, but left for completeness

} // end of main
//--

/**
 * loadFile
 *
 * Load the input file. A list of single random integers [0->255]
 *
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void loadFile(void)
{
 int p,q,i=0, j=0, count255=0;
 FILE *j_file;
 int tempInput;

 98

CPUbitonicSort.cpp, continued.

 // Open the input file
 if((j_file = fopen(inputFile1, "r"))==NULL)
 {
 // Inform user
 printf("Input file not found\n");
 // Terminate program
 exit(0);
 }

 // format is 1 integer [0-255] per line
 while(fscanf(j_file , "%d\n" , &tempInput) != EOF)
 {
 q=floor(i/checkImageHeight);
 p=i%checkImageWidth;
 // checkImage array used by CPU bitonic sort
 checkImage[toggleTex][p][q][0] = tempInput;
 checkImage[toggleTex][p][q][1] = tempInput;
 checkImage[toggleTex][p][q][2] = tempInput;
 checkImage[toggleTex][p][q][3] = tempInput;
 // oneDarray used by std::sort and qsort
 oneDarray[i]=tempInput;
 i++;
 // if the data is too large, ignore extra items
 if(i>=checkImageWidth*checkImageWidth) { break; }
 }
 fclose(j_file); // Close the file stream

} // end of loadFile
//--

 99

 7.4 Appendix 4. Source Code: Motion Estimation

 7.4.1 Appendix 4.1 runTest.bat

 The following code is from runTest.bat, the batch file used to initiate the

GpuCpuVideo.exe program which executes the motion vector program using all of

the input images from each of the three video sequences.

echo OFF
REM
REM This batch file is designed to run the GPU-CPU program mutiple times to

record
REM performance metrics

set loops=5
set program=GpuCpuVideo.exe
set resultsFile=Data\Results-File.txt

@echo Will run the test using all inputs, %loops% times.

:STAGE1
set counter=0
set counterTwo=1
:STAGE1A
%program% Data\FOR\for0%counter%.bmp Data\FOR\for0%counterTwo%.bmp

%resultsFile% %loops%
set /a counter=%counter%+1
set /a counterTwo=%counterTwo%+1
if %counterTwo% == 26 GOTO STAGE2
GOTO STAGE1A

:STAGE2
set counter=0
set counterTwo=1
:STAGE2A
%program% Data\MAD\mad0%counter%.bmp Data\MAD\mad0%counterTwo%.bmp

%resultsFile% %loops%
set /a counter=%counter%+1
set /a counterTwo=%counterTwo%+1
if %counterTwo% == 26 GOTO STAGE3
GOTO STAGE2A

:STAGE3
set counter=0
set counterTwo=1
:STAGE3A
%program% Data\COA\coa0%counter%.bmp Data\COA\coa0%counterTwo%.bmp

%resultsFile% %loops%
set /a counter=%counter%+1
set /a counterTwo=%counterTwo%+1
if %counterTwo% == 26 GOTO STAGE4
GOTO STAGE3A

:STAGE4
pause

 100

 7.4.2 Appendix 4.2 GpuCpuVideo.cpp

 The following code is from GpuCpuVideo.cpp When compiled, it creates

GpuCpuVideo.exe which is the program used to find motion vectors between

successive images in video sequences, using both the GPU and CPU.

/**
 * GPU-CPU Motion Vectors
 *
 * This program is designed to use the Graphics Processor Unit and
 * Central Processing Unit to demonstrate the ability to perform
 * Exhaustive Block Matching between two video frames to aid the
 * process of motion estimation.
 * The output files conatin the motion vectors as calcualted by
 * the GPU method and CPU method.
 *
 * @param imageFile1 Location of the first input image (256*256 bmp)
 * @param imageFile2 Location of second input image (256*256 bmp)
 * @param resultsFile Location of output file to write results to
 * @param testsToRun number of times to run each method
 * @return void
 *
 * @author Jason Ruane, DIT Bolton St. Dublin, Ireland. B773.2006.
 * @version 1.0
 */

// Preprocessor directives
// Cg and OpenGL libraries
#ifdef _MSC_VER
#pragma comment(lib, "cg/lib/cg.lib")
#pragma comment(lib, "cg/lib/cgGL.lib")
#endif
#pragma comment (lib, "opengl32.lib")

// Standard includes required
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <windows.h>
#include <winbase.h>
#include <assert.h>
#include <math.h>

// Cg requirements
#include "cg/include/Cg/cg.h" // Cg runtime API
#include "cg/include/Cg/cgGL.h" // OpenGL-specific Cg

runtime API
#include "cg/include/GL/glext.h" // local header file
#include "cg/include/GL/glut.h" // Glut and OpenGL api

// Definitions to be refererenced throughout
#define checkImageWidth 256 // The width dimension of the input images
#define checkImageHeight 256 // The height dimension of the input

images
#define debug 0 // Set to 0 for Debug off, 1 for Debug On
#define SleepTime 1 // How many milliseconds to wait between

iterations
#define maxString 255 // The maximum characters in command line

parameters
#define reducedInfoSize 32 // Equal to checkImageWidth/scale

 101

GpuCpuVideo.cpp, continued.

// EXT_framebuffer_object related definitions
// as per - http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
// EXT_framebuffer_object - http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
extern PFNGLISRENDERBUFFEREXTPROC glIsRenderbufferEXT = NULL;
extern PFNGLBINDRENDERBUFFEREXTPROC glBindRenderbufferEXT = NULL;
extern PFNGLDELETERENDERBUFFERSEXTPROC glDeleteRenderbuffersEXT = NULL;
extern PFNGLGENRENDERBUFFERSEXTPROC glGenRenderbuffersEXT = NULL;
extern PFNGLRENDERBUFFERSTORAGEEXTPROC glRenderbufferStorageEXT = NULL;
extern PFNGLGETRENDERBUFFERPARAMETERIVEXTPROC

glGetRenderbufferParameterivEXT = NULL;
extern PFNGLISFRAMEBUFFEREXTPROC glIsFramebufferEXT = NULL;
extern PFNGLBINDFRAMEBUFFEREXTPROC glBindFramebufferEXT = NULL;
extern PFNGLDELETEFRAMEBUFFERSEXTPROC glDeleteFramebuffersEXT = NULL;
extern PFNGLGENFRAMEBUFFERSEXTPROC glGenFramebuffersEXT = NULL;
extern PFNGLCHECKFRAMEBUFFERSTATUSEXTPROC glCheckFramebufferStatusEXT =

NULL;
extern PFNGLFRAMEBUFFERTEXTURE1DEXTPROC glFramebufferTexture1DEXT = NULL;
extern PFNGLFRAMEBUFFERTEXTURE2DEXTPROC glFramebufferTexture2DEXT = NULL;
extern PFNGLFRAMEBUFFERTEXTURE3DEXTPROC glFramebufferTexture3DEXT = NULL;
extern PFNGLFRAMEBUFFERRENDERBUFFEREXTPROC glFramebufferRenderbufferEXT =

NULL;
extern PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVEXTPROC

glGetFramebufferAttachmentParameterivEXT = NULL;
extern PFNGLGENERATEMIPMAPEXTPROC glGenerateMipmapEXT = NULL;

// Function definitions
void reshape(int w, int h);
void keyb(unsigned char k, int x, int y);
void loadBMP(void);
void loadBMP2(void);
void saveInputFile1(void);
void saveInputFile2(void);
void saveConstructedImage(void);
void saveImageDiff1(void);
void saveImageDiff2(void);
void evaluateImageDiffs(void);
void CPUmotionEstimation(void);
void checkCorrelation(void);
bool checkFramebufferStatus(void);
void cgErrorCallback(void);
void updatePart2(void);
void display(void);
void saveMVdata(void);
void saveStats(void);

// Cg related globals
CGcontext g_cgContext;
CGprofile g_cgProfile;
float myTemp2[4]; // a parameter being passed to the CG shader
float myTemp[4]; // a parameter being passed to the CG shader

// Input filename containers
char inputFile1[maxString],inputFile2[maxString];
// Output filename container
char resultsFilename[maxString];
// Predefined itermediate results files
char outputFile1[maxString]="Data\\output1.pgm";
char outputFile2[maxString]="Data\\output2.pgm";
char outputFile3[maxString]="Data\\output3.pgm";
char outputFile4[maxString]="Data\\imageDiff1.pgm";
char outputFile5[maxString]="Data\\imageDiff2.pgm";
char cpuMVfile[maxString]="Data\\cpuMVfile.pgm";
char gpuMVfile[maxString]="Data\\gpuMVfile.pgm";

 102

GpuCpuVideo.cpp, continued.

// number of pixels in one side of the block used
float scale=8;
// A suitable divisor to alleviate the 255 truncation at block summation
// Also appears in the Cg program in a similar role
int truncationScale = 8;
// The number of times to repeat the exercise to increase results accuracy
// will be set inside main()
int testsToRun;
double end,timeForUpdate=0; // Timing the frames

// Arrays which will contain the grayscale image data in integer form
static GLubyte checkImage[checkImageHeight][checkImageWidth][4]; //

Input image 1
static GLubyte checkImageTwo[checkImageHeight][checkImageWidth][4];

 // Input image 2
static GLubyte constructedImage[checkImageHeight][checkImageWidth][4]; //

Motion Estimated image
// Data array for saving the texture to, when required to move from GPU to

CPU
static GLubyte data[checkImageWidth][checkImageHeight][4];
static GLubyte outData[checkImageWidth][checkImageHeight][4];
// Store the motion vector index associated with the best SAD found so far

in the bottom left reducedInfo area
static GLubyte MVdata[checkImageWidth][checkImageWidth][4];
// Store the lowest SAD sums found so far for each block after offset image

subtraction
static GLubyte blockSums[checkImageWidth][checkImageWidth][4];

// Global integers related to the OpenGL management
GLuint fbo, color, depth, depth_rb, latestTextureUpdated,

destinationAttachment;

// The predefined offsets to use for block matching.
// Set in such a fashion that currentOffsetIndex is an index into the

arrays, to signify
// what offsets in X and Y directions to search.
// Note: The 0,0 elements are deliberately last to force a failed search for

optimum offsets
// to return a 0,0 result.
// Note: For Looping could have been used, but this method permits custom

search strategies
int currentOffsetIndex;
int offsetArrayX[]={-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,
 -7,-6,-5,-4,-3,-2,-1,7,6,5,4,3,2,1,0
 };
int offsetArrayY[]={-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,-7,
 -6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
 -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
 -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
 -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
 -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

 103

GpuCpuVideo.cpp, continued.

 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 };

// The dimensions of the image array
int intImageWidth=checkImageWidth,

intImageHeight=checkImageHeight;
// Handles to texture data arrays
unsigned int iTexture;
unsigned int jTexture,_jNewTexture, jTexture2, jTextureDiff,

jTextureBlockSums, jTextureMVdata;
// The toggling texture which is read from
unsigned int actualTexture;
unsigned int outDataTexture;
 // Handles to fragment programs
CGprogram

_fragmentProgram,_fragmentProgramDiff,_fragmentProgramBlockSums,
_fragmentProgramMVdata;

// Handles to the uniform parameters of fragment programs
CGparameter _textureParam, _textureParam2, _textureParamDiff,

_textureParamBlockSums, _textureParamMVdata;
CGparameter outDataTextureParam, myCParameter, myCDistance;

/**
 * gpuInit
 *
 * Sets up the OpenGL and Cg environment in preparation for GLUT.
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void gpuInit(void)
{
 // initialise the unifiorm parameter
 // A float4 variable holding data to send to the Cg shader
 myTemp[0] = 1;
 myTemp[1] = intImageWidth;
 myTemp[2] = intImageHeight;
 myTemp[3] = intImageHeight*intImageWidth;
 // FYI information
 if (debug) printf("Using Width %d and Height

%d\n",intImageWidth,intImageHeight);

 // Setup Cg, how to handle any errors in Cg
 cgSetErrorCallback(cgErrorCallback);
 // Declare a handle to the Cg context
 g_cgContext = cgCreateContext();

 // Get the best profile for this hardware
 g_cgProfile = cgGLGetLatestProfile(CG_GL_FRAGMENT);
 assert(g_cgProfile != CG_PROFILE_UNKNOWN);
 cgGLSetOptimalOptions(g_cgProfile);

 104

GpuCpuVideo.cpp, continued.

 // FYI check to see what this machine's largest texture size is
 int maxtexsize;
 glGetIntegerv(GL_MAX_TEXTURE_SIZE,&maxtexsize);
 if(debug)
 {
 printf("GL_MAX_TEXTURE_SIZE, %d\n",maxtexsize);
 printf("CG_profile, %d\n",g_cgProfile);
 }

 // FYI check to see what this machine's largest render buffer is
 GLint max_size = 0;
 glGetIntegerv(GL_MAX_RENDERBUFFER_SIZE_EXT, &max_size);
 if (debug) printf("glRenderBuffer:: max size %d\n",max_size);
 // FYI check to see how many colour attachments are possible
 glGetIntegerv(GL_MAX_COLOR_ATTACHMENTS_EXT, &max_size);
 if (debug) printf("glRenderBuffer:: max number of colour attachments

%d\n",max_size);

 // Generate a texture for writing to
 glGenTextures(1, &iTexture);
 glBindTexture(GL_TEXTURE_2D, iTexture);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, intImageWidth, intImageHeight,
 0, GL_RGBA, GL_FLOAT, NULL);

 // generate a texture and bind to the checkImage array
 glGenTextures(1, &jTexture);
 glBindTexture(GL_TEXTURE_2D, jTexture);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, intImageWidth, intImageHeight,
 0, GL_RGBA, GL_UNSIGNED_BYTE, checkImage);

 // generate a texture and bind to the checkImageTwo array
 glGenTextures(1, &jTexture2);
 glBindTexture(GL_TEXTURE_2D, jTexture2);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, intImageWidth, intImageHeight,
 0, GL_RGBA, GL_UNSIGNED_BYTE, checkImageTwo);

 // create a third texture, to be used as the image difference target
 glGenTextures(1, &jTextureDiff);
 glBindTexture(GL_TEXTURE_2D, jTextureDiff);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, intImageWidth, intImageHeight,
 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

 // create a texture, to be used as the blocksums array (best SAD value

found so far)
 glGenTextures(1, &jTextureBlockSums);
 glBindTexture(GL_TEXTURE_2D, jTextureBlockSums);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

 105

GpuCpuVideo.cpp, continued.

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, intImageWidth, intImageHeight,
 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

 // create a texture, to be used as the MVdata array (index of the

offset for the best SAD value found so far)
 glGenTextures(1, &jTextureMVdata);
 glBindTexture(GL_TEXTURE_2D, jTextureMVdata);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, intImageWidth, intImageHeight,
 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

 // Create the fragment programs and assign to handles
 // 8*8 summation
 _fragmentProgram = cgCreateProgramFromFile(g_cgContext, CG_SOURCE,

"fragmentShaderSum8by8.cg", g_cgProfile,
 "edges", NULL);
 // Image subtraction / difference
 _fragmentProgramDiff = cgCreateProgramFromFile(g_cgContext, CG_SOURCE,

"fragmentShaderDiff.cg", g_cgProfile,
 "edges", NULL);
 // Block summation comparison
 _fragmentProgramBlockSums = cgCreateProgramFromFile(g_cgContext,

CG_SOURCE,

"fragmentShaderBlockSums.cg", g_cgProfile,
 "edges", NULL);
 // Block summation comparison
 _fragmentProgramMVdata = cgCreateProgramFromFile(g_cgContext,

CG_SOURCE,

"fragmentShaderMVdata.cg", g_cgProfile,
 "edges", NULL);

 // Load the fragment programs and check ability to get handle of

parameters
 if(_fragmentProgramDiff != NULL)
 {
 if(debug) printf("fragmentProgramDiff loaded ok\n");
 cgGLLoadProgram(_fragmentProgramDiff);
 cgGLBindProgram(_fragmentProgramDiff);
 cgGLEnableProfile(g_cgProfile);
 _textureParam = cgGetNamedParameter(_fragmentProgramDiff, "texture");
 _textureParam2 = cgGetNamedParameter(_fragmentProgramDiff,

"texture2");
 _textureParamDiff = cgGetNamedParameter(_fragmentProgramDiff,

"textureDiff");
 }
 if(_fragmentProgram != NULL)
 {
 if(debug) printf("fragmentProgram loaded ok\n");
 cgGLLoadProgram(_fragmentProgram);
 cgGLBindProgram(_fragmentProgram);
 cgGLEnableProfile(g_cgProfile);
 _textureParam = cgGetNamedParameter(_fragmentProgram, "texture");
 _textureParam2 = cgGetNamedParameter(_fragmentProgram, "texture2");

 106

GpuCpuVideo.cpp, continued.

 _textureParamDiff = cgGetNamedParameter(_fragmentProgram,

"textureDiff");
 }
 if(_fragmentProgramBlockSums != NULL)
 {
 if(debug) printf("fragmentProgramBlockSums loaded ok\n");
 cgGLLoadProgram(_fragmentProgramBlockSums);
 cgGLBindProgram(_fragmentProgramBlockSums);
 cgGLEnableProfile(g_cgProfile);
 _textureParam = cgGetNamedParameter(_fragmentProgramBlockSums,

"textureBlockSums");
 }
 if(_fragmentProgramMVdata != NULL)
 {
 if(debug) printf("fragmentProgramMVdata loaded ok\n");
 cgGLLoadProgram(_fragmentProgramMVdata);
 cgGLBindProgram(_fragmentProgramMVdata);
 cgGLEnableProfile(g_cgProfile);
 }

 // Set a normal uniform parameter for the fragment program
 if(_fragmentProgram != NULL)
 {
 CGparameter myCParameter = cgGetNamedParameter(_fragmentProgram,

"myCgParameter");
 cgGLSetParameter4fv(myCParameter, myTemp);
 }

 // Set the OpenGL viewport
 glViewport(0, 0, intImageWidth, intImageHeight);

 // EXT_framebuffer_object requirements to enable Frame Buffer Object

usage
 // as per myxo.css.msu.edu:443/d2x-xl/trunk/arch/ogl/fbuffer.c
 char *ext = (char*)glGetString(GL_EXTENSIONS);
 if(strstr(ext, "EXT_framebuffer_object") == NULL)
 {
 printf("EXT_framebuffer_object extension was not found");
 }
 else
 {
 glIsRenderbufferEXT =

(PFNGLISRENDERBUFFEREXTPROC)wglGetProcAddress("glIsRenderbufferEXT");
 glBindRenderbufferEXT =

(PFNGLBINDRENDERBUFFEREXTPROC)wglGetProcAddress("glBindRenderbufferEXT"
);

 glDeleteRenderbuffersEXT =
(PFNGLDELETERENDERBUFFERSEXTPROC)wglGetProcAddress("glDeleteRenderbuffe
rsEXT");

 glGenRenderbuffersEXT =
(PFNGLGENRENDERBUFFERSEXTPROC)wglGetProcAddress("glGenRenderbuffersEXT"
);

 glRenderbufferStorageEXT =
(PFNGLRENDERBUFFERSTORAGEEXTPROC)wglGetProcAddress("glRenderbufferStora
geEXT");

 glGetRenderbufferParameterivEXT =
(PFNGLGETRENDERBUFFERPARAMETERIVEXTPROC)wglGetProcAddress("glGetRenderb
ufferParameterivEXT");

 glIsFramebufferEXT =
(PFNGLISFRAMEBUFFEREXTPROC)wglGetProcAddress("glIsFramebufferEXT");

 glBindFramebufferEXT =
(PFNGLBINDFRAMEBUFFEREXTPROC)wglGetProcAddress("glBindFramebufferEXT");

 107

GpuCpuVideo.cpp, continued.

 glDeleteFramebuffersEXT =

(PFNGLDELETEFRAMEBUFFERSEXTPROC)wglGetProcAddress("glDeleteFramebuffers
EXT");

 glGenFramebuffersEXT =
(PFNGLGENFRAMEBUFFERSEXTPROC)wglGetProcAddress("glGenFramebuffersEXT");

 glCheckFramebufferStatusEXT =
(PFNGLCHECKFRAMEBUFFERSTATUSEXTPROC)wglGetProcAddress("glCheckFramebuff
erStatusEXT");

 glFramebufferTexture1DEXT =
(PFNGLFRAMEBUFFERTEXTURE1DEXTPROC)wglGetProcAddress("glFramebufferTextu
re1DEXT");

 glFramebufferTexture2DEXT =
(PFNGLFRAMEBUFFERTEXTURE2DEXTPROC)wglGetProcAddress("glFramebufferTextu
re2DEXT");

 glFramebufferTexture3DEXT =
(PFNGLFRAMEBUFFERTEXTURE3DEXTPROC)wglGetProcAddress("glFramebufferTextu
re3DEXT");

 glFramebufferRenderbufferEXT =
(PFNGLFRAMEBUFFERRENDERBUFFEREXTPROC)wglGetProcAddress("glFramebufferRe
nderbufferEXT");

 glGetFramebufferAttachmentParameterivEXT =
(PFNGLGETFRAMEBUFFERATTACHMENTPARAMETERIVEXTPROC)wglGetProcAddress("glG
etFramebufferAttachmentParameterivEXT");

 glGenerateMipmapEXT =
(PFNGLGENERATEMIPMAPEXTPROC)wglGetProcAddress("glGenerateMipmapEXT");

 if(!glIsRenderbufferEXT || !glBindRenderbufferEXT ||

!glDeleteRenderbuffersEXT ||
 !glGenRenderbuffersEXT || !glRenderbufferStorageEXT ||

!glGetRenderbufferParameterivEXT ||
 !glIsFramebufferEXT || !glBindFramebufferEXT ||

!glDeleteFramebuffersEXT ||
 !glGenFramebuffersEXT || !glCheckFramebufferStatusEXT ||

!glFramebufferTexture1DEXT ||
 !glFramebufferTexture2DEXT || !glFramebufferTexture3DEXT ||

!glFramebufferRenderbufferEXT||
 !glGetFramebufferAttachmentParameterivEXT ||

!glGenerateMipmapEXT)
 {
 printf("One or more EXT_framebuffer_object functions were not

found");
 }
 }

 // Create an FBO (Frame Buffer Object) for offscreen rendering
 glGenFramebuffersEXT(1, &fbo);

 // Create color texture, null contents yet
 glGenTextures(1, &color);
 glBindTexture(GL_TEXTURE_2D, color);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, intImageWidth,
 intImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,

NULL);
 // Confirm the framebuffer is OK so far
 checkFramebufferStatus();
 // Create depth renderbuffer
 glGenRenderbuffersEXT(1, &depth);

 // Bind the FBO and attach color textures to it
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,

GL_TEXTURE_2D,
 jTexture, 0);

 108

GpuCpuVideo.cpp, continued.

 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT1_EXT,

GL_TEXTURE_2D,
 jTexture2, 0);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT2_EXT,

GL_TEXTURE_2D,
 iTexture, 0);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT3_EXT,

GL_TEXTURE_2D,
 jTextureDiff, 0);
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);
 glGenRenderbuffersEXT(1, &depth_rb);// render buffer
 // initialise depth renderbuffer
 glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, depth_rb);
 glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT24,

intImageWidth, intImageHeight);
 // attach renderbuffer to framebuffer
 glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT,

GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, depth_rb);
 // Define which is the current drawing location
 glDrawBuffer(GL_COLOR_ATTACHMENT2_EXT);
 // Confirm the framebuffer is OK so far
 checkFramebufferStatus();

} // End of gpuInit
//--

/**
 * main
 *
 * Standard C main function - Entry point for program
 *
 *
 * @param argc Number of arguments passed
 * @param argv Items of arguments passed
 * @return int 0 if successful, non-zero if not.
 *
 * @author Jason Ruane
 * @version 1.0
 */
int main(int argc, char **argv)
{
 // Inform user
 printf("Starting GPU-CPU motion vector search with %d

parameters,\n",argc-1);
 // If the correct number of arguments were supplied
 if(argc==5)
 {
 // Retrieve the first input image filename
 printf("Input file 1: %s\n",argv[1]);
 strcpy(inputFile1,argv[1]);
 // Retrieve the second input image filename
 printf("Input file 2: %s\n",argv[2]);
 strcpy(inputFile2,argv[2]);
 // Retrieve the first output image filename
 printf("Output file: %s\n",argv[3]);
 strcpy(resultsFilename,argv[3]);
 // Retrieve the number of times to run the search
 printf("Repeat times: %s\n",argv[4]);
 testsToRun = atoi(argv[4]);
 }
 else
 {

 109

GpuCpuVideo.cpp, continued.

 // Inform user of required parameters
 printf("Please use 2 input files,1 result file\n");
 printf("and number of loops to repeat as command line

parameters,\n");
 // Terminate program and return to OS
 exit(0);
 }

 // Load the two input files into the data arrays
 loadBMP();
 loadBMP2();

 // Setup the GLUT system
 // RGBA display mode required
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);
 // Window size in pixels
 glutInitWindowSize(checkImageWidth, checkImageWidth);
 // Initial position of window
 glutInitWindowPosition(100, 100);
 // Create the display window
 glutCreateWindow("GPUcompute");
 // Set the funtion to call when the GPU is ready
 glutIdleFunc(updatePart2);
 // If the GLUT window is resized, what to run
 glutReshapeFunc(reshape);
 // Set up system and load texture
 gpuInit();

 // Initiate the GLUT windowing system
 // It will not return so the program exit() is contained in the
 // updatePart2 function specified in the above glutIdleFunc
 glutMainLoop();

 return(0); // Never actually reached, but left for completeness

} // end of main
//--

/**
 * updatePart2
 *
 * Sets the input to the Cg shader and enacts a drawing to the screen
 * so that a single image offset is evaluated, its image difference is
 * found, the sum absolute difference found, compared with the best SAD
 * so far, and if lower, is used as the lowest SAD for next run.
 * This function is called repeatedly by GLUT.
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void updatePart2()
{
 // The number of offsets to be checked (related to the window size)
 int numberOfOffsets=sizeof(offsetArrayX)/sizeof(offsetArrayX[0]);

 // Fill the winning BlockSums texture with max values, which the SADs

will later beat (ie. be lower than)
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT3_EXT,

GL_TEXTURE_2D, jTextureBlockSums, 0);
 destinationAttachment=GL_COLOR_ATTACHMENT3_EXT;

 110

GpuCpuVideo.cpp, continued.

 glDrawBuffer(destinationAttachment);
 glClearColor(1.0f, 1.0f, 1.0f, 1.0f); //

Assigns max value to each element
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Clear the jTextureMVdata array before starting (set to all zero)
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT3_EXT,

GL_TEXTURE_2D, jTextureMVdata, 0);
 destinationAttachment=GL_COLOR_ATTACHMENT2_EXT;
 glDrawBuffer(destinationAttachment);
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f); //

Assigns min value to each element
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Clear the iTexture array before starting (set to all zero)
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT2_EXT,

GL_TEXTURE_2D, iTexture, 0);
 destinationAttachment=GL_COLOR_ATTACHMENT2_EXT;
 glDrawBuffer(destinationAttachment);
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f); //

Assigns min value to each element
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Restore the starting attachments
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,

GL_TEXTURE_2D, jTexture, 0);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT1_EXT,

GL_TEXTURE_2D, jTexture2, 0);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT2_EXT,

GL_TEXTURE_2D, iTexture, 0);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT3_EXT,

GL_TEXTURE_2D, jTextureDiff, 0);

 double tempStart = clock(); // Start the GPU timer

 // Loop through the number of times the iteration is to be performed
 // Done to increase accuracy of the timings
 for (int testRun=0;testRun<testsToRun;testRun++)
 {
 // Inform user of progress
 printf("GPU iteration %d of %d.\n",testRun+1,testsToRun);

 // Scan through the entire array of offsets to be examined
 for (currentOffsetIndex=0;currentOffsetIndex <

numberOfOffsets;currentOffsetIndex++)
 {
 // The actual offsets are contained in the predefined arrays,
 // into which the index currentOffsetIndex is used
 int currentOffsetX=offsetArrayX[currentOffsetIndex];
 int currentOffsetY=offsetArrayY[currentOffsetIndex];

 //--
 // Step 1: calculate an image subtraction of the two input

textures
 // and write the output to jTextureDiff
 if (debug) printf("Performing the image subtraction\n");
 latestTextureUpdated=jTextureDiff; // destination to write to
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT3_EXT,

 GL_TEXTURE_2D, latestTextureUpdated, 0);
 destinationAttachment=GL_COLOR_ATTACHMENT3_EXT;
 glDrawBuffer(destinationAttachment);
 // FYI check of the framebuffer completeness

 111

GpuCpuVideo.cpp, continued.

 if(debug) printf("Check frameBufferStatus :

\n");checkFramebufferStatus();

 // Bind the Cg program
 cgGLEnableProfile(g_cgProfile);
 cgGLBindProgram(_fragmentProgramDiff);

 // Connect to the variables and pass in the values of the

offsets to check
 myTemp[0]=currentOffsetX; // the Xoffset to test
 myTemp[1]=currentOffsetY; // the Yoffset to test
 myTemp[2]=checkImageWidth;
 myTemp[3]=checkImageHeight;
 myCParameter = cgGetNamedParameter(_fragmentProgramDiff,

"myCgParameter");
 cgGLSetParameter4fv(myCParameter, myTemp);

 // bind the alternating texture as input (the other will be

output
 glBindTexture(GL_TEXTURE_2D, jTexture);
 glBindTexture(GL_TEXTURE_2D, jTexture2);

 // bind the textures as input to the filter
 _textureParam = cgGetNamedParameter(_fragmentProgramDiff,

"texture");
 _textureParam2 = cgGetNamedParameter(_fragmentProgramDiff,

"texture2");
 _textureParamDiff = cgGetNamedParameter(_fragmentProgramDiff,

"textureDiff");
 cgGLSetTextureParameter(_textureParam, jTexture);
 cgGLEnableTextureParameter(_textureParam);
 cgGLSetTextureParameter(_textureParam2, jTexture2);
 cgGLEnableTextureParameter(_textureParam2);

 // The output texture will be jTextureDiff, clear it before

writing to
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Actually draw the data via a quad, thus enacting the GPU

computations (Cg program)
 glEnable(GL_TEXTURE_2D);
 glPolygonMode(GL_FRONT,GL_FILL);
 glBegin(GL_QUADS);
 {
 glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
 glTexCoord2f(1, 0); glVertex3f(1, -1, -0.5f);
 glTexCoord2f(1, 1); glVertex3f(1, 1, -0.5f);
 glTexCoord2f(0, 1); glVertex3f(-1, 1, -0.5f);
 }
 glEnd();
 // disable the shader
 cgGLDisableProfile(g_cgProfile);
 cgGLDisableTextureParameter(_textureParamDiff);
 cgGLDisableTextureParameter(_textureParam2);
 cgGLDisableTextureParameter(_textureParam);
 glDisable(GL_TEXTURE_2D);

 // End of image subtraction step

 //--
 // Step 2: sum the 8*8 pixel block in jTextureDiff (after

offset image subtraction)
 // and write it to iTexture

 112

GpuCpuVideo.cpp, continued.

 // FYI information
 if(debug) printf("Starting the 8*8 summation step\n");

 // FBO related switches
 // actualTexture is the one to read from,

framebuffertexture/glDrawBuffer is the one to write to
 // Set the source and destination buffers for this stage
 actualTexture=jTextureDiff; // source of the sums

information
 latestTextureUpdated=iTexture; // destination to

write to
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT2_EXT,

 GL_TEXTURE_2D, latestTextureUpdated, 0);
 destinationAttachment=GL_COLOR_ATTACHMENT2_EXT;
 glDrawBuffer(destinationAttachment);
 checkFramebufferStatus();

 // Bind the 8*8 summation fragment shader:
 cgGLEnableProfile(g_cgProfile);
 cgGLBindProgram(_fragmentProgram);

 // connect to the variables and pass in the values of the

offsets to check
 myTemp[0]=currentOffsetX; // the Xoffset to test
 myTemp[1]=currentOffsetY; // the Yoffset to test
 myTemp[2]=checkImageWidth;
 myTemp[3]=checkImageHeight;
 myCParameter = cgGetNamedParameter(_fragmentProgram,

"myCgParameter");
 cgGLSetParameter4fv(myCParameter, myTemp);

 // bind the texture as input
 glBindTexture(GL_TEXTURE_2D, jTexture);
 glBindTexture(GL_TEXTURE_2D, jTexture2);
 glBindTexture(GL_TEXTURE_2D, jTextureDiff);
 _textureParam = cgGetNamedParameter(_fragmentProgram,

"texture");
 _textureParam2 = cgGetNamedParameter(_fragmentProgram,

"texture2");
 _textureParamDiff = cgGetNamedParameter(_fragmentProgram,

"textureDiff");
 cgGLSetTextureParameter(_textureParam, jTexture);
 cgGLEnableTextureParameter(_textureParam);
 cgGLSetTextureParameter(_textureParam2, jTexture2);
 cgGLEnableTextureParameter(_textureParam2);
 cgGLSetTextureParameter(_textureParamDiff, jTextureDiff);
 cgGLEnableTextureParameter(_textureParamDiff);

 glEnable(GL_TEXTURE_2D);
 glPolygonMode(GL_FRONT,GL_FILL);
 glBegin(GL_QUADS);
 {
 glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
 glTexCoord2f(1, 0); glVertex3f(-1+2/scale, -1, -0.5f);
 glTexCoord2f(1, 1); glVertex3f(-1+2/scale, -1+2/scale,

-0.5f);
 glTexCoord2f(0, 1); glVertex3f(-1, -1+2/scale, -0.5f);
 }
 glEnd();

 // disable the shader
 cgGLDisableProfile(g_cgProfile);
 cgGLDisableTextureParameter(_textureParamDiff);

 113

GpuCpuVideo.cpp, continued.

 glDisable(GL_TEXTURE_2D);

 // ------------------- End of the 8*8 summation

 //--
 // Step 3: Compare the block summations to those found so far

and record if lower
 // writing the ouput to jTextureBlockSums

 // FYI information
 if (debug) printf("Performing the block sums comparison\n");

 // Set the source and destination buffers for this stage
 actualTexture=iTexture; // source

of the sums information
 latestTextureUpdated=jTextureBlockSums; // destination to

write to
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT3_EXT,
 GL_TEXTURE_2D,

jTextureBlockSums, 0);
 destinationAttachment=GL_COLOR_ATTACHMENT3_EXT;
 glDrawBuffer(destinationAttachment);
 checkFramebufferStatus();

 // Bind the Cg program
 cgGLEnableProfile(g_cgProfile);
 cgGLBindProgram(_fragmentProgramBlockSums);

 // connect to the variables and pass in the values of the

offsets to check
 myTemp[0]=currentOffsetX; // the Xoffset to test
 myTemp[1]=currentOffsetY; // the Yoffset to test
 myTemp[2]=checkImageWidth;
 myTemp[3]=checkImageHeight;
 myCParameter = cgGetNamedParameter(_fragmentProgramBlockSums,

"myCgParameter");
 cgGLSetParameter4fv(myCParameter, myTemp);

 // Bind the texture as input
 glBindTexture(GL_TEXTURE_2D, iTexture);

 // Bind the textures as input to the shader
 _textureParam = cgGetNamedParameter(_fragmentProgramBlockSums,

"textureSums");
 cgGLSetTextureParameter(_textureParam, iTexture);
 cgGLEnableTextureParameter(_textureParam);

 // this texture is also the destination
 // - note a toggling destination could be used to eliminate

read/write to same texture
 _textureParam2 =

cgGetNamedParameter(_fragmentProgramBlockSums,
"textureBlockSumsWinning");

 cgGLSetTextureParameter(_textureParam2, jTextureBlockSums);
 cgGLEnableTextureParameter(_textureParam2);
 // FYI information
 if(debug) printf("Drawing the image block sums comparisons

quad\n");

 // Actually draw the window sized quad
 glEnable(GL_TEXTURE_2D);
 glPolygonMode(GL_FRONT,GL_FILL);
 glBegin(GL_QUADS);
 {

 114

GpuCpuVideo.cpp, continued.

 // Only use the lower left reducedInfo area (containing

the block sums)
 // ie reducedInfoSize*reducedInfoSize pixels on origin

and destination
 glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
 glTexCoord2f(1/scale, 0); glVertex3f(-1+2/scale, -1, -

0.5f);
 glTexCoord2f(1/scale, 1/scale); glVertex3f(-1+2/scale,

-1+2/scale, -0.5f);
 glTexCoord2f(0, 1/scale); glVertex3f(-1, -1+2/scale, -

0.5f);
 }
 glEnd();

 // Disable the shader
 cgGLDisableProfile(g_cgProfile);
 cgGLDisableTextureParameter(_textureParam);
 cgGLDisableTextureParameter(_textureParam2);
 glDisable(GL_TEXTURE_2D);

 // End of blocks summation comparison step 3
 //--

 // Step 4: Record the offset used to find the current lowest

SAD for a block
 //--

 // writing the ouput to jTextureMVdata

 // FYI information
 if (debug) printf("Performing the MVdata recording

stage\n");

 // Set the source and destination buffers for this stage
 latestTextureUpdated=jTextureMVdata; // destination to

write to
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT1_EXT, GL_TEXTURE_2D, jTextureBlockSums, 0);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT2_EXT, GL_TEXTURE_2D, iTexture, 0);
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT3_EXT, GL_TEXTURE_2D, jTextureMVdata, 0);
 destinationAttachment=GL_COLOR_ATTACHMENT3_EXT;
 glDrawBuffer(destinationAttachment);
 if(debug) printf("Check frameBufferStatus :

\n");checkFramebufferStatus();

 // Bind the Cg program
 cgGLEnableProfile(g_cgProfile);
 cgGLBindProgram(_fragmentProgramMVdata);
 // connect to the variables and pass in the values of the

offsets to check
 myTemp[0]=currentOffsetIndex; // the index of the current

offset
 myTemp[1]=0;
 myTemp[2]=checkImageWidth;
 myTemp[3]=checkImageHeight;
 myCParameter = cgGetNamedParameter(_fragmentProgramMVdata,

"myCgParameter");
 cgGLSetParameter4fv(myCParameter, myTemp);
 // Bind the texture as input
 glBindTexture(GL_TEXTURE_2D, iTexture);
 // Bind the textures as input to the filter

 115

GpuCpuVideo.cpp, continued.

 _textureParam = cgGetNamedParameter(_fragmentProgramMVdata,

"textureBlockSumsWinning");
 cgGLSetTextureParameter(_textureParam, jTextureBlockSums);
 cgGLEnableTextureParameter(_textureParam);
 _textureParam2 = cgGetNamedParameter(_fragmentProgramMVdata,

"textureBlockSumsCurrent");
 cgGLSetTextureParameter(_textureParam2, iTexture);
 cgGLEnableTextureParameter(_textureParam2);
 _textureParamDiff =

cgGetNamedParameter(_fragmentProgramMVdata, "textureMVdata");
 cgGLSetTextureParameter(_textureParamDiff, jTextureMVdata);
 cgGLEnableTextureParameter(_textureParamDiff);
 // FYI information
 if(debug) printf("Drawing the quad for recording the

winning motion vector\n");
 // Actually draw the window sized quad
 glEnable(GL_TEXTURE_2D);
 glPolygonMode(GL_FRONT,GL_FILL);
 glBegin(GL_QUADS);
 {
 // Only use the lower left reducedInfo area (containing

the block sums)
 // ie reducedInfoSize*reducedInfoSize pixels on origin

and destination
 glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
 glTexCoord2f(1/scale, 0); glVertex3f(-1+2/scale, -1, -

0.5f);
 glTexCoord2f(1/scale, 1/scale); glVertex3f(-1+2/scale,

-1+2/scale, -0.5f);
 glTexCoord2f(0, 1/scale); glVertex3f(-1, -1+2/scale, -

0.5f);
 }
 glEnd();

 // disable the shader
 cgGLDisableProfile(g_cgProfile);
 cgGLDisableTextureParameter(_textureParam);
 cgGLDisableTextureParameter(_textureParam2);
 glDisable(GL_TEXTURE_2D);

 // End of step 4
 //--

 } // end the loop of currentOffsetIndex

 // Allow the CPU to rest if SleepTime is set
 Sleep(SleepTime);

 }// end testRun loop

 // Stop the timer of GPU computations
 timeForUpdate = clock()-tempStart;

 display(); // Show the input image onscreen

 saveMVdata(); // Copy the MVdata from GPU to CPU
 saveStats(); // Record the performance metrics to output file

 saveConstructedImage(); // Reconstruct the image using the input

image and the motion vectors
 saveImageDiff1(); // Save the difference image of image1 -

image2
 saveImageDiff2(); // Save the difference image of

reconstructed image - image2

 116

GpuCpuVideo.cpp, continued.

 evaluateImageDiffs(); // Record the properties of the image differences

(the PSNR)

 CPUmotionEstimation(); // Use the CPU to compute the motion

vectors and record performance

 // Finished this program instance, exit normally.
 exit(0);

} // end of updatePart2
//--

/**
 * display
 *
 * Draws onscreen the input image within the GLUT window
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void display()
{
 // Bind to the GLUT window, after FBO usage
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
 // Bind the input image texture
 glBindTexture(GL_TEXTURE_2D, jTexture2);
 glEnable(GL_TEXTURE_2D);
 // Draw the texture onscreen using a single quad
 glBegin(GL_QUADS);
 {
 glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
 glTexCoord2f(1, 0); glVertex3f(1, -1, -0.5f);
 glTexCoord2f(1, 1); glVertex3f(1, 1, -0.5f);
 glTexCoord2f(0, 1); glVertex3f(-1, 1, -0.5f);
 }
 glEnd();
 // bring the framebuffer to the forefront, so image may be seen
 glutSwapBuffers();

 // Restore the FBO previous scenario
 glDisable(GL_TEXTURE_2D);
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);

} // end of display
//--

/**
 * saveMVdata
 *
 * Write the array of motion vectors to file.
 *
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */

 117

GpuCpuVideo.cpp, continued.

void saveMVdata(void)
{
 // Just saving the one plane currently in use
 // Local variables in use
 int p,q,j=0;
 FILE *j_file;
 // hard coding the texture to write to file (the winning motion vectors

so far)
 latestTextureUpdated=jTextureMVdata; // destination to write to
 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT3_EXT,

GL_TEXTURE_2D, jTextureMVdata, 0);
 destinationAttachment=GL_COLOR_ATTACHMENT3_EXT;
 glDrawBuffer(destinationAttachment);
 // FYI information
 if(debug) printf("Saving current MVdata :

\n");checkFramebufferStatus();
 // bind the motion vector texture as input
 glBindTexture(GL_TEXTURE_2D, jTextureMVdata);
 glEnable(GL_TEXTURE_2D);
 glPolygonMode(GL_FRONT,GL_FILL);
 // Draw the window sized quad
 glBegin(GL_QUADS);
 {
 glTexCoord2f(0, 0); glVertex3f(-1, -1, -0.5f);
 glTexCoord2f(1, 0); glVertex3f(1, -1, -0.5f);
 glTexCoord2f(1, 1); glVertex3f(1, 1, -0.5f);
 glTexCoord2f(0, 1); glVertex3f(-1, 1, -0.5f);
 }
 glEnd();

 // Copy the buffer to a data array
 // It will arrive in a 90 degree rotation
 glReadBuffer(destinationAttachment);
 // Copy the pixel data into the array MVdata
 glReadPixels(0, 0, intImageWidth,

intImageHeight,GL_RGBA,GL_UNSIGNED_BYTE,MVdata);
 glFinish();

 // Open the ouput file for writing
 if((j_file = fopen(gpuMVfile, "w"))==NULL) return ;

 // Looping by row (max to 0) and column (0 to max) so that the 90

degree rotation can be comprehended
 for (p=reducedInfoSize-1; p>=0; p--)
 {
 for (q=0; q<reducedInfoSize; q++)
 {
 //Perform sanity checks to ensure MVs destined for outside the

images are not used
 if ((p*scale)-offsetArrayY[MVdata[p][q][2]]<0 || (p*scale)-

offsetArrayY[MVdata[p][q][2]]>checkImageHeight-scale
 || (q*scale)+offsetArrayX[MVdata[p][q][2]]<0 ||

(q*scale)+offsetArrayX[MVdata[p][q][2]]>checkImageWidth)
 {
 if(debug) printf("Taking out GPU value %d,%d which

is
%d,%d\n",p,q,offsetArrayX[MVdata[p][q][2]],offsetArrayY[MVdata[p][q][2]
]);

 MVdata[p][q][2]=int(sizeof(offsetArrayX) /
sizeof(offsetArrayX[0])-1); // last MV item (Zero)

 }
 fprintf(j_file,"%d,%d

\t",offsetArrayX[MVdata[p][q][2]],offsetArrayY[MVdata[p][q][2]]);
 }
 fprintf(j_file,"\n");

 118

GpuCpuVideo.cpp, continued.

 }
 fclose(j_file); // Closes the file stream
 // FYI information
 if(debug) printf("Finished writing the Motion Vectors to file\n");

} // end of saveMVdata
//--

/**
 * saveStats
 *
 * Write the performance data to file so as to
 * track the performance of the program (GPU section)
 *
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void saveStats(void)
{
 // Local file handle required
 FILE *j_file;
 if((j_file = fopen(resultsFilename, "a+"))==NULL)
 {
 printf("Could not create the results file");
 exit(0);
 }

 if (debug) printf("Saving performance results to file.\n");
 fprintf(j_file,"\n\nStart of results -------------\n");
 fprintf(j_file,"Input files:%s and %s\n",inputFile1,inputFile2);
 fprintf(j_file,"GPU performance:\n");
 fprintf(j_file,"%.6f seconds for %d

iterations.\n",timeForUpdate/CLOCKS_PER_SEC,testsToRun);
 float secondsPerIteration = timeForUpdate/CLOCKS_PER_SEC/testsToRun;
 fprintf(j_file,"%.6f seconds per iteration.(%.1f

FPS)\n",secondsPerIteration, 1.0/secondsPerIteration);
 fprintf(j_file,"Using a search window of %d

positions.\n",sizeof(offsetArrayX) / sizeof(offsetArrayX[0]));
 float imagePermutationsPerSecond = (sizeof(offsetArrayX) /

 sizeof(offsetArrayX[0]))/(timeForUpdate/CLOCKS_PER_SEC/testsToRun);
 fprintf(j_file,"%.3f full image permutations per second

evaluated.\n",imagePermutationsPerSecond);
 fprintf(j_file,"Block size of %.0f in an image of size:%d by

%d.\n",scale,int(checkImageWidth),
 int(checkImageHeight));
 float numberOfBlocks =

(checkImageWidth/scale)*(checkImageHeight*scale);
 fprintf(j_file,"%.0f block permutations per second

evaluated.\n",imagePermutationsPerSecond*numberOfBlocks);

 fclose(j_file); // Close the file stream

} // end of saveStats
//--

 119

GpuCpuVideo.cpp, continued.

/**
 * reshape
 *
 * Standard GLUT function required for when GLUT
 * reacts to a resizing of the window
 *
 *
 * @param w Width of the window in pixels
 * @param h Height of the window in pixels
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void reshape(int w, int h)
{
 // Avoid division by zero
 if (h == 0) h = 1;
 // Set the viewport
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(-1, 1, -1, 1);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
} // end of reshape(int w, int h)
//--

/**
 * cgErrorCallback
 *
 * Standard Cg function to facilitate the reporting of errors
 * experienced in the Cg environment to the user.
 * Only called when Cg experiences an error.
 *
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void cgErrorCallback(void)
{
 CGerror lastError = cgGetError();
 if(lastError)
 {
 printf("%s\n\n", cgGetErrorString(lastError));
 printf("%s\n", cgGetLastListing(g_cgContext));
 printf("Cg error!\n");
 }
} // end of cgErrorCallback
//--

/**
 * loadBMP
 *
 * Load the first input file (256*256 bitmap) which
 * is the origin video frame and store in the checkImage array.
 *
 *

 120

GpuCpuVideo.cpp, continued.

 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void loadBMP(void)
{
 //Local variables
 int p,q,i, j=0;
 FILE *l_file;
 BITMAPFILEHEADER fileheader;
 BITMAPINFOHEADER infoheader;
 RGBTRIPLE rgb;

 // Open the file for reading
 if((l_file = fopen(inputFile1, "rb"))==NULL)
 {
 // Inform user
 printf("Input file1 not available\n");
 // Terminate program
 exit(0);
 }
 // Read the bitmap header
 fread(&fileheader, sizeof(fileheader), 1, l_file);
 fseek(l_file, sizeof(fileheader), SEEK_SET);
 fread(&infoheader, sizeof(infoheader), 1, l_file);
 // Only read a maximum of texture size worth of input data
 int maxWidth,maxHeight;
 if(checkImageWidth<infoheader.biWidth)
 maxWidth=checkImageWidth;
 else
 maxWidth=infoheader.biWidth;
 if(checkImageHeight<infoheader.biHeight)
 maxHeight=checkImageHeight;
 else
 maxHeight=infoheader.biHeight;

 // Read the data
 for (i=0; i < maxWidth*maxHeight; i++)
 {
 fread(&rgb, sizeof(rgb), 1, l_file);
 // Convert into a 2D array, the position of current pixel
 p=i/checkImageWidth;
 q=i%checkImageWidth;
 // Store data into the array
 checkImage[p][q][2] = (GLubyte) rgb.rgbtRed;
 checkImage[p][q][1] = (GLubyte) rgb.rgbtGreen;
 checkImage[p][q][0] = (GLubyte) rgb.rgbtBlue;
 // Setting the alpha plane to opaque
 checkImage[p][q][3] = (GLubyte) 255;
 }
 fclose(l_file); // Close the file stream

 // save the ASCII contents of the first input file in pgm format
 saveInputFile1();

} // end of loadBMP
//--

 121

GpuCpuVideo.cpp, continued.

/**
 * loadBMP2
 *
 * Load the second input file (256*256 bitmap) which
 * is the origin video frame and store in the checkImageTwo array.
 *
 *
 * @param void
 * @return void
 *
 * @author Jason Ruane
 * @version 1.0
 */
void loadBMP2(void)
{
 //Local variables
 int p,q,i, j=0;
 FILE *l_file;
 BITMAPFILEHEADER fileheader;
 BITMAPINFOHEADER infoheader;
 RGBTRIPLE rgb;

 // Open the file for reading
 if((l_file = fopen(inputFile2, "rb"))==NULL)
 {
 // Inform user
 printf("Input file2 not available\n");
 // Terminate program
 exit(0);
 }

 // Read the bitmap header
 fread(&fileheader, sizeof(fileheader), 1, l_file);
 fseek(l_file, sizeof(fileheader), SEEK_SET);
 fread(&infoheader, sizeof(infoheader), 1, l_file);

 // Only want a maximum of texture size worth of input data
 int maxWidth,maxHeight;
 if(checkImageWidth<infoheader.biWidth)
 maxWidth=checkImageWidth;
 else
 maxWidth=infoheader.biWidth;
 if(checkImageHeight<infoheader.biHeight)
 maxHeight=checkImageHeight;
 else
 maxHeight=infoheader.biHeight;

 // Read the data
 for (i=0; i < maxWidth*maxHeight; i++)
 {
 fread(&rgb, sizeof(rgb), 1, l_file);
 // Convert into a 2D array, the position of current pixel
 p=i/checkImageWidth;
 q=i%checkImageWidth;
 // Store data into the array
 checkImageTwo[p][q][2] = (GLubyte) rgb.rgbtRed;
 checkImageTwo[p][q][1] = (GLubyte) rgb.rgbtGreen;
 checkImageTwo[p][q][0] = (GLubyte) rgb.rgbtBlue;
 // Setting the alpha plane to opaque
 checkImageTwo[p][q][3] = (GLubyte) 255;
 }
 fclose(l_file); // Closes the file stream

 122

GpuCpuVideo.cpp, continued.

 // save the ASCII contents of the second input file to pgm format
 saveInputFile2();

} // end of loadBMP2
//--

/**
 * checkFramebufferStatus
 *
 * Standard OpenGL function to check the status of the framebuffer
 *
 *
 * @param void
 * @return bool 0=Success, 1=Fail
 *
 * @author Jason Ruane, as per official OpenGL definitions
 * @see http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
 * @version 1.0
 */
bool checkFramebufferStatus() {
 GLenum status;
 status=(GLenum)glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
 switch(status) {
 case GL_FRAMEBUFFER_COMPLETE_EXT:
 return true;
 case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT:
 printf("Framebuffer incomplete,incomplete attachment\n");
 return false;
 case GL_FRAMEBUFFER_UNSUPPORTED_EXT:
 printf("Unsupported framebuffer format\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT_EXT:
 printf("Framebuffer incomplete,missing attachment\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT:
 printf("Framebuffer incomplete,attached images must have same

dimensions\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT:
 printf("Framebuffer incomplete,attached images must have same

format\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT:
 printf("Framebuffer incomplete,missing draw buffer\n");
 return false;
 case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT:
 printf("Framebuffer incomplete,missing read buffer\n");
 return false;
 }
 return false;
} // end of checkFramebufferStatus
//--

 123

GpuCpuVideo.cpp, continued.

/**
 * saveInputFile1
 *
 * Save a pgm format copy of the input file1 being used
 *
 *
 * @param void
 * @return bool 0=Success, 1=Fail
 *
 * @author Jason Ruane, as per official OpenGL definitions
 * @see http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
 * @version 1.0
 */
void saveInputFile1(void)
{
 // Local variables
 int p,q,j=0;
 FILE *j_file;
 // Open file for writing
 if((j_file = fopen(outputFile1, "w"))==NULL) return ;
 // Print file header
 fprintf(j_file,"P2 %d %d 255\n",checkImageWidth,checkImageHeight);
 // Print the data to file
 // looping by row (max to 0) and column (0 to max) so that the 90

degree rotation can be comprehended
 for (p=checkImageHeight-1; p>=0; p--)
 {
 for (q=0; q<checkImageWidth; q++)
 //Writing a single 8bit number per pixel to file
 fprintf(j_file,"%d ",checkImage[p][q][0]);
 fprintf(j_file,"\n");
 }
 fclose(j_file); // Close the file stream

} // end of saveInputFile1
//--

/**
 * saveInputFile2
 *
 * Save a pgm format copy of the input file2 being used
 *
 *
 * @param void
 * @return bool 0=Success, 1=Fail
 *
 * @author Jason Ruane, as per official OpenGL definitions
 * @see http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
 * @version 1.0
 */
void saveInputFile2(void)
{
 // Local variables
 int p,q,j=0;
 FILE *j_file;
 // Open file for writing
 if((j_file = fopen(outputFile2, "w"))==NULL) return ;
 // Print file header
 fprintf(j_file,"P2 %d %d 255\n",checkImageWidth,checkImageHeight);
 // Print the data to file

 124

GpuCpuVideo.cpp, continued.

 // looping by row (max to 0) and column (0 to max) so that the 90

degree rotation can be comprehended
 for (p=checkImageHeight-1; p>=0; p--)
 {
 for (q=0; q<checkImageWidth; q++)
 //Writing a single 8bit number per pixel to file
 fprintf(j_file,"%d ",checkImageTwo[p][q][0]);
 fprintf(j_file,"\n");
 }
 fclose(j_file); // Close the file stream

} // end of saveInputFile2

/**
 * saveInputFile2
 *
 * Save a pgm format copy of the constructed image using
 * the input file1 and the motion vectors
 *
 *
 * @param void
 * @return bool 0=Success, 1=Fail
 *
 * @author Jason Ruane, as per official OpenGL definitions
 * @see http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
 * @version 1.0
 */
void saveConstructedImage(void)
{
 // Local variables
 int p,q,mvx,mvy,mvOffset,mvxNew,mvyNew,j=0;
 FILE *j_file;
 // Open file for writing
 if((j_file = fopen(outputFile3, "w"))==NULL) return ;
 // Print the header section
 fprintf(j_file,"P2 %d %d 255\n",checkImageWidth,checkImageHeight);
 // Print the data to file
 for (p=checkImageHeight-1;p>=0;p--)
 {
 for (q=0; q<checkImageWidth; q++)
 {
 // find the respective block
 mvy=int(floor(p/scale));
 mvx=int(floor(q/scale));
 // find the respective entry in the MV data
 mvOffset=MVdata[mvy][mvx][2];
 // find the actual offset reccommended by MV data
 mvyNew = p-offsetArrayY[mvOffset];
 mvxNew = q+offsetArrayX[mvOffset];
 // output the actual pixel values
 fprintf(j_file,"%d ",checkImage[mvyNew][mvxNew][0]);
 constructedImage[p][q][0]=checkImage[mvyNew][mvxNew][0];
 }
 fprintf(j_file,"\n");
 }
 fclose(j_file); // Close the file stream

} // end of saveInputFile2

 125

GpuCpuVideo.cpp, continued.

/**
 * saveImageDiff1
 *
 * Save a pgm format copy of the diference between
 * input image 1 and input image 2
 *
 *
 * @param void
 * @return bool 0=Success, 1=Fail
 *
 * @author Jason Ruane, as per official OpenGL definitions
 * @see http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
 * @version 1.0
 */
void saveImageDiff1(void)
{
 // Local variables
 int p,q,j=0;
 FILE *j_file;
 // Open the file for writing
 if((j_file = fopen(outputFile4, "w"))==NULL) return ;
 // Header information
 fprintf(j_file,"P2 %d %d 255\n",checkImageWidth,checkImageHeight);
 // Data
 // looping by row (max to 0) and column (0 to max) so that the 90

degree rotation can be comprehended
 for (p=checkImageHeight-1; p>=0; p--)
 {
 for (q=0; q<checkImageWidth; q++)
 //Writing a single 8bit number to file per pixel
 fprintf(j_file,"%d ",abs(checkImage[p][q][0]-

checkImageTwo[p][q][0]));
 fprintf(j_file,"\n");
 }
 fclose(j_file); // Close the file stream
} // end of saveImageDiff1

/**
 * saveImageDiff1
 *
 * Save a pgm format copy of the diference between
 * input image 2 and the constructed image
 *
 *
 * @param void
 * @return bool 0=Success, 1=Fail
 *
 * @author Jason Ruane, as per official OpenGL definitions
 * @see http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
 * @version 1.0
 */
void saveImageDiff2(void)
{
 // Local variables
 int p,q,j=0;
 FILE *j_file;
 // Open the file for writing
 if((j_file = fopen(outputFile5, "w"))==NULL) return ;
 // The header section
 fprintf(j_file,"P2 %d %d 255\n",checkImageWidth,checkImageHeight);
 // The data

 126

GpuCpuVideo.cpp, continued.

 // looping by row (max to 0) and column (0 to max) so that the 90

degree rotation can be comprehended
 for (p=checkImageHeight-1; p>=0; p--)
 {
 for (q=0; q<checkImageWidth; q++)
 //Writing a single 8bit number to file
 fprintf(j_file,"%d ",abs(checkImageTwo[p][q][0]-

constructedImage[p][q][0]));
 fprintf(j_file,"\n");
 }
 fclose(j_file); // Close the file stream
} // end of saveImageDiff2

/**
 * evaluateImageDiffs
 *
 * Calculate the PSNR ratios and SAD values, recording them to file
 *
 *
 * @param void
 * @return bool 0=Success, 1=Fail
 *
 * @author Jason Ruane, as per official OpenGL definitions
 * @see http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
 * @version 1.0
 */
void evaluateImageDiffs(void)
{
 // Local variables
 int p,q;
 float itemCounter=0,MSEsum=0,MSE,SADsum=0,tempResult;
 FILE *j_file;
 // FYI information
 if(debug) printf("Evaluating the difference images\n");
 // Open the file for writing
 if((j_file = fopen(resultsFilename, "a"))==NULL)
 {
 // Inform user
 printf("Could not open the results file");
 // Terminate program
 exit(0);
 }

 // The diference between input image 1 and input image 2
 // Calculate the MeanSquareError and SumAbsoluteDifference
 for (p=checkImageHeight-1; p>=0; p--)
 {
 for (q=0; q<checkImageWidth; q++)
 {
 tempResult = abs(checkImage[p][q][0]-checkImageTwo[p][q][0]);
 MSEsum += tempResult*tempResult;
 SADsum += tempResult;
 itemCounter++;
 }
 }
 // MSE only has the sum so far, divide by order to get mean
 MSE=MSEsum/itemCounter;
 // Print to file
 fprintf(j_file,"Image difference 1 (image 1 and 2):");
 // Avoiding division by zero in PSNR calculation
 if(MSE == 0)
 {

 127

GpuCpuVideo.cpp, continued.

 fprintf(j_file,"PSNR: Infinity, SAD:0, both images are identical");
 }
 else
 {
 // PSNR formula used is:
 /* PSNR=10*log10(Max_Gray_Value*Max_Gray_Value / MSE); */
 fprintf(j_file,"PSNR: %.3f (dB), ", 10.0*log10((255.0*255.0)/MSE));
 fprintf(j_file,"SAD: %.0f\n", SADsum);
 }

 //---//
 // The diference between input image 2 and the constructed image
 // reset counters
 itemCounter=0,MSEsum=0;SADsum=0;
 // Calculate the MeanSquareError and SumAbsoluteDifference
 for (p=checkImageHeight-1; p>=0; p--)
 {
 for (q=0; q<checkImageWidth; q++)
 {
 tempResult = abs(checkImageTwo[p][q][0]-

constructedImage[p][q][0]);
 MSEsum += tempResult*tempResult;
 SADsum += tempResult;
 itemCounter++;
 }
 }
 // MSE only has the sum so far, divide by order to get mean
 MSE=MSEsum/itemCounter;
 // Print to file
 fprintf(j_file,"Image difference 2 (image 2 and constructed):");
 // Avoiding division by zero in PSNR calculation
 if(MSE == 0)
 {
 fprintf(j_file,"PSNR: Infinity, SAD:0, both images are identical");
 }
 else
 {
 // PSNR formula used is:
 /* PSNR=10*log10(Max_Gray_Value*Max_Gray_Value / MSE); */
 fprintf(j_file,"PSNR: %.3f (dB), ", 10.0*log10((255.0*255.0)/MSE));
 fprintf(j_file,"SAD: %.0f\n", SADsum);
 }

} // end of evaluateImageDiffs

/**
 * CPUmotionEstimation
 *
 * Perform the motion estimation using the CPU
 * in a similar fashion to the prior GPU method
 *
 * @param void
 * @return bool 0=Success, 1=Fail
 *
 * @author Jason Ruane, as per official OpenGL definitions
 * @see http://oss.sgi.com/projects/ogl-

sample/registry/EXT/framebuffer_object.txt
 * @version 1.0
 */
void CPUmotionEstimation(void)
{
 // FYI information
 if(debug) printf("Starting CPU based motion estimation\n");

 128

GpuCpuVideo.cpp, continued.

 // Local variables required
 int p, q, matchCounter=0, totalCounter=0;
 int cpuMVarray[reducedInfoSize][reducedInfoSize];
 int cpuMVarrayTemp[reducedInfoSize][reducedInfoSize];
 int cpuMVarrayWinningSum[reducedInfoSize][reducedInfoSize];
 int currentBlockX, currentBlockY, currentDiff, currentMVindex=0;
 int numberOfOffsets=sizeof(offsetArrayX)/sizeof(offsetArrayX[0]);
 FILE *j_file;
 double timeCPUstart = clock();

 // Loop through the number of tests to perform for increasing the

timing accuracy
 for(int cpuIteration=0;cpuIteration<testsToRun;cpuIteration++)
 {
 // FYI information
 printf("CPU iteration %d of %d.\n",cpuIteration+1,testsToRun);

 // Clear the arrays before starting
 for (currentBlockY=reducedInfoSize-1; currentBlockY>=0;

currentBlockY--)
 {
 for (currentBlockX=0; currentBlockX<reducedInfoSize;

currentBlockX++)
 {
 cpuMVarrayWinningSum[currentBlockX][currentBlockY] = 255;
 cpuMVarray[currentBlockX][currentBlockY]=numberOfOffsets;
 }
 }

 // Loop through all the offset positions
 for(currentMVindex=0;currentMVindex <

numberOfOffsets;currentMVindex++)
 {
 // Clear the array before starting
 for (currentBlockY=reducedInfoSize-1; currentBlockY>=0;

currentBlockY--)
 {
 for (currentBlockX=0; currentBlockX<reducedInfoSize;

currentBlockX++)
 {
 cpuMVarrayTemp[currentBlockX][currentBlockY] = 0;
 }
 }

 // Calculate the image difference at the current offset
 for (p=checkImageHeight-1; p>=0; p--)
 {
 for (q=0; q<checkImageWidth; q++)
 {
 currentBlockY=q/scale;
 currentBlockX=p/scale;
 cpuMVarrayTemp[currentBlockX][currentBlockY] +=
 abs(checkImage[p-

offsetArrayY[currentMVindex]][q+offsetArrayX[currentMVindex]][0]
 - checkImageTwo[p][q][0]);
 }
 }

 // Stepping through each row and cloumn within,
 for (currentBlockY=reducedInfoSize-1; currentBlockY>=0;

currentBlockY--)
 {

 129

GpuCpuVideo.cpp, continued.

 for (currentBlockX=0; currentBlockX<reducedInfoSize;

currentBlockX++)
 {
 // Find the image difference for this block

position
 // The next division and minimisation are to

reflect the 8 bit truncation of GPU setup

 currentDiff=min(int((float(cpuMVarrayTemp[currentBlockX][currentBlock
Y])

 /float(truncationScale))+0.5), 255);

 // Examine whether this is a winning offset
candidate

 if(currentDiff <=
cpuMVarrayWinningSum[currentBlockX][currentBlockY])

 {
 // Record the offset and sum if it is a

winning candidate

 cpuMVarrayWinningSum[currentBlockX][currentBlockY] = currentDiff;
 cpuMVarray[currentBlockX][currentBlockY] =

currentMVindex;
 }
 }
 } // end of loop stepping through each row and column

 } // end of for loop through offset positions

 // Allow the CPU to pause if variable is set
 Sleep(SleepTime);

 } // end cpuIterations loop

 // Record the finish time for CPU timing calculation
 double timeCPUfinish = clock();

 // Save the CPU MV array to file
 // Open file for writing
 if((j_file = fopen(cpuMVfile, "w"))==NULL)
 {
 // Inform the user
 printf("Could not open the results file");
 // Terminate the program
 exit(0);
 }
 // Loop through the data strucutre, in rows and columns
 for (p=reducedInfoSize-1; p>=0; p--)
 {
 for (q=0; q<reducedInfoSize; q++)
 {

 //Perform sanity checks to ensure MVs destined for outside the

images are not used
 if ((p*scale)-offsetArrayY[MVdata[p][q][2]]<0 || (p*scale)-

offsetArrayY[MVdata[p][q][2]]>checkImageHeight-scale
 || (q*scale)+offsetArrayX[MVdata[p][q][2]]<0 ||

(q*scale)+offsetArrayX[MVdata[p][q][2]]>checkImageWidth)
 {
 if(debug) printf("Taking out CPU value %d,%d which

is
%d,%d\n",p,q,offsetArrayX[MVdata[p][q][2]],offsetArrayY[MVdata[p][q][2]
]);

 130

GpuCpuVideo.cpp, continued.

 MVdata[p][q][2]=int(sizeof(offsetArrayX) /

sizeof(offsetArrayX[0])-1); // last MV item (Zero)
 }
 fprintf(j_file,"%d,%d

\t",offsetArrayX[cpuMVarray[p][q]],offsetArrayY[cpuMVarray[p][q]]);

 }

 fprintf(j_file,"\n"); // Finished writing one row

 }
 // Close the file
 fclose(j_file);

 // Save the CPU performance data to the results file
 // This time appending, as the GPU version has already written to the

file
 // open the file
 if((j_file = fopen(resultsFilename, "a+"))==NULL)
 {
 // Inform user
 printf("Could not create the results file");
 // Terminate program
 exit(0);
 }

 // FYI information
 if (debug) printf("Saving CPU performance results to file.\n");
 // Write performance information to file
 fprintf(j_file,"CPU performance:\n%.6f seconds for %d iterations\n",
 (timeCPUfinish-

timeCPUstart)/CLOCKS_PER_SEC,testsToRun);
 float secondsPerIteration = (timeCPUfinish-

timeCPUstart)/CLOCKS_PER_SEC/testsToRun;
 fprintf(j_file,"%.6f seconds per iteration.(%.1f

FPS)\n",secondsPerIteration, 1.0/secondsPerIteration);
 fprintf(j_file,"---

\n");

 // Record the correlation between MVs found by CPU and GPU methods
 // Stepping through each row and column
 for (p=reducedInfoSize-1; p>=0; p--)
 {
 for (q=0; q<reducedInfoSize; q++)
 {
 if(cpuMVarray[p][q] == int(MVdata[p][q][2]))
 {
 // Increment the counter for matched items
 matchCounter++;
 }
 else
 {
 // FYI information
 if(debug) printf("not matched at %d,%d cpu:%d

versus gpu:%d with a \
 CPUsum of %d

\n",p,q,cpuMVarray[p][q],int(MVdata[p][q][2]),cpuMVarrayWinningSum[p][q
]);

 }
 // Increment the counter of items examined
 totalCounter++;
 }
 }

 131

GpuCpuVideo.cpp, continued.

 // Print to file the summary of matching items
 fprintf(j_file,"Motion Vectors matched in %d of %d

instances.\n",matchCounter,totalCounter);

 fclose(j_file); // Close the file stream

} // End of CPUmotionEstimation

 132

 7.4.3 Appendix 4.3 fragmentShaderSum8*8.cg

 The following code is from fragmentShaderSum8*8.cg. It is the Cg code to

accompany the Motion Vector program. It is designed to calculate the sum of values

in an 8*8 pixel region.

/**
 * fragmentShaderSum8*8.cg.
 *
 * This program calculates the sum of an 8*8 pixel region.
 *
 * @return A half4 value relating to colour planes for 1 pixel
 *
 * @author Jason Ruane, DIT Bolton St. Dublin, Ireland. B773.2006.
 * @version 1.0
 */

half4 edges(float2 coords : TEX0, //: TEX0 for clamped version of

coordinates, WPOS for integer
 uniform sampler2D texture,
 uniform sampler2D texture2,
 uniform sampler2D textureDiff,
 uniform half4 myDistance,
 uniform float4 myCgParameter) : COLOR
{

float offsetX = myCgParameter[0]; // The X offset, from 0 to 7
 // using the opposite from origin on the Y axis to maintain top left

origin
float offsetY = myCgParameter[1]; // The Y offset, from 0 to 7
float imageWidth = myCgParameter[2]; // The image width
float imageHeight = myCgParameter[3]; // The image height

float pbufwidth =imageWidth-1.0; // needed to stop coords.y showing up 156

twice in a row

// we are using a scaled image here 1/block size in X and Y
// multiply the current position by the image size to get an integer

position
float elem2dx = floor(coords.x*255.0)-3;
float elem2dy = floor(coords.y*255.0)+4;

//return(tex2D(textureDiff,half2((elem2dx)/255.0,(elem2dy)/255.0))); //

origin top left pixel

// ---------- Calculate the summation of the 8*8 block this pixel

represents
float4 val01=half4(0,0,0,0);
float i=0;
// sums pixel values to the right and down from the origin pixel
for(i=0;i<8;i++) // scan across horizontally for 8 columns
{
 // add up each vertical row of 8 pixels
val01+=tex2D(textureDiff,half2((elem2dx+i)/255.0,(elem2dy-0)/255.0));
val01+=tex2D(textureDiff,half2((elem2dx+i)/255.0,(elem2dy-1)/255.0));
val01+=tex2D(textureDiff,half2((elem2dx+i)/255.0,(elem2dy-2)/255.0));
val01+=tex2D(textureDiff,half2((elem2dx+i)/255.0,(elem2dy-3)/255.0));
val01+=tex2D(textureDiff,half2((elem2dx+i)/255.0,(elem2dy-4)/255.0));
val01+=tex2D(textureDiff,half2((elem2dx+i)/255.0,(elem2dy-5)/255.0));
val01+=tex2D(textureDiff,half2((elem2dx+i)/255.0,(elem2dy-6)/255.0));
val01+=tex2D(textureDiff,half2((elem2dx+i)/255.0,(elem2dy-7)/255.0));
}

 133

GpuCpuVideo.cpp, continued.

// Eliminate off image MV directions by discouraging with a large summation
// 255*64 < 17000
if(elem2dx<1 && offsetX<0)
 val01=17000;
if(elem2dy<8 && offsetY>0)
 val01=17000;
if(elem2dx>imageWidth-10 && offsetX>0)
 val01=17000;
if(elem2dy>imageHeight-2 && offsetY<0)
 val01=17000;
return(floor(floor(val01*255.0 +0.5)/8.0 +0.5)/255.0);
//return((val01*255.0/8.0)/255.0); // truncationScale divisor to avoid

255 ceiling
// ---------------- Finished summation of 8*8 block

} // end of pixel shader function

 134

 7.4.4 Appendix 4.4 fragmentShaderDiff.cg

 The following code is from fragmentShaderDiff.cg. It is the Cg code to

accompany the Motion Vector program (phase 2). It is designed to calculate the

image difference of two input textures/images.

/**
 * fragmentShaderDiff.cg.
 *
 * This program calculates an image difference of two images.
 *
 * @return A half4 value relating to colour planes for 1 pixel
 *
 * @author Jason Ruane, DIT Bolton St. Dublin, Ireland. B773.2006.
 * @version 1.0
 */

 half4 edges(float2 coords : TEX0, //: TEX0 for clamped version of

coordinates, WPOS for integer
 uniform sampler2D texture,
 uniform sampler2D texture2,
 uniform sampler2D textureDiff,
 uniform float4 myCgParameter) : COLOR
{

float offsetX = myCgParameter[0]; // The X offset, from 0 to 7
 // using the opposite from origin on the Y axis to maintain top left

origin
float offsetY = myCgParameter[1]; // The Y offset, from 0 to 7
float imageWidth = myCgParameter[2]; // The image width
float imageHeight = myCgParameter[3]; // The image height

float pbufwidth =imageWidth-1.0; // needed to stop coords.y showing up 156

twice in a row

 // The floor is required to make it start

at zero and reach 255
int elem2dx = floor(coords.x*imageWidth); // NOTE: floor here messes

the texture addressing up
int elem2dy = floor(coords.y*imageWidth); // NOTE: floor here messes

the texture addressing up

// ---------- Calculate the image subtraction, 1 pixel at a time
// finding texture2-texture (texture will have offset applied to account

for M.E. searching
//
float elemUnit= 1.0/imageWidth; // this was pbufwidth, but reccommend it

is imageWidth
float4 val01 = tex2D(texture,half2((elem2dx+offsetX)/pbufwidth,(elem2dy-

offsetY)/pbufwidth));
float4 val02 = tex2D(texture2,half2(elem2dx/pbufwidth,elem2dy/pbufwidth));
return(abs(val02 - val01));
// ---------------- Finished image difference
}

 135

 7.4.5 Appendix 4.5 fragmentShaderBlockSums.cg

 The following code is from fragmentShaderBlockSums.cg. It is the Cg code

to accompany the Motion Vector program (phase 3). It is designed to compare two

block sums and record the winning sum.

/**
 * fragmentShaderBlockSums.cg
 *
 * This program compares two block sums and records the winning
 * i.e. lowest running total.
 *
 * @return A half4 value relating to colour planes for 1 pixel
 *
 * @author Jason Ruane, DIT Bolton St. Dublin, Ireland. B773.2006.
 * @version 1.0
 */

 half4 edges(float2 coords : TEX0, //: TEX0 for clamped version of

coordinates, WPOS for integer
 uniform sampler2D textureSums,
 uniform sampler2D textureBlockSumsWinning,
 uniform half4 myDistance,
 uniform float4 myCgParameter) : COLOR
{

float4 currentVal = tex2D(textureSums,half2(coords.x,coords.y));
float4 winningVal = tex2D(textureBlockSumsWinning,half2(coords.x,coords.y));

float4 myReturnVal= (currentVal[2] <= winningVal[2]) ?

currentVal:winningVal;

return(myReturnVal);

} // end of pixel shader function

 136

 7.4.6 Appendix 4.6 fragmentShaderMVdata.cg

 The following code is from fragmentShaderMVdata.cg. It is the Cg code to

accompany the Motion Vector program (phase 4). It is designed to compare two

block sums and record the index of the winning offset.

/**
 * fragmentShaderMVdata.cg
 *
 * This program compares two block sums and records the
 * i.e. index of the winning offset
 *
 * @return A half4 value relating to colour planes for 1 pixel
 *
 * @author Jason Ruane, DIT Bolton St. Dublin, Ireland. B773.2006.
 * @version 1.0
 */

 half4 edges(float2 coords : TEX0, //: TEX0 for clamped version of

coordinates, WPOS for integer
 uniform sampler2D textureBlockSumsCurrent,
 uniform sampler2D textureBlockSumsWinning,
 uniform sampler2D textureMVdata,
 uniform half4 myDistance,
 uniform float4 myCgParameter) : COLOR
{
//myCgParameter[0]=index of the motion vector offset

float4 currentVal = tex2D(textureBlockSumsCurrent,half2(coords.x,coords.y));
float4 winningVal = tex2D(textureBlockSumsWinning,half2(coords.x,coords.y));
float4 MVdata = tex2D(textureMVdata,half2(coords.x,coords.y));
float4 returnVal;

if(currentVal[2] <= winningVal[2])
 {returnVal = half4(0,0,myCgParameter[0]/255.0,0);}
else
 {returnVal = MVdata;}

return(returnVal);

} // end of pixel shader function

 137

8. Glossary

AGP Accelerated Graphics Port

AI Artificial Inteligence

API Application Programming Interface

ARB Architecture Review Board

Cg C for graphics

CPU Central Processing Unit

DCT Discrete Cosine Transform

EBMA Exhaustive Block Matching Algorithm

FBO Frame Buffer Object

FPS Frames Per Second

GFLOP Giga Foating Logic Operations

GLEW OpenGL Extension Wrangler Library

GLUT OpenGL Utility Toolkit

GNU GNU’s Not Unix

GPGPU General Purpose Computing on a Graphics Processing Unit

GPU Graphics Processing Unit

IDCT Inverse Discrete Cosine Transform

MAD Mean Absolute Difference

MIMD Multiple Instruction, Multiple Data

MSE Mean Square Error

PC Personal Computer

PCI Peripheral Component Interconnect

PPU Physics Processing Unit

PSNR Peak Signal to Noise Ratio.

 (source: wwwDUB)

RAM Random Access Memory

SAD Sum Absolute Difference

SIMD Single Instruction, Multiple Data

SLI Scalable Link Interface

